Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc ADB=góc AEC
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>AI vuông góc BC
=>AI vuông góc DE
mà ΔADE cân tại A
nên AI là trung trực của DE
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
khó quá xem trên mạng
(Bạn tự vẽ hình giùm)
a/ Ta có \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> 180o - \(\widehat{ABC}\)= 180o - \(\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{ACE}\)
\(\Delta ABD\)và \(\Delta ACE\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD = CE (gt)
=> \(\Delta ABD\)= \(\Delta ACE\)(c - g - c) => AD = AE (hai cạnh tương ứng) => \(\Delta ADE\)cân tại A (đpcm)
b/ Mình xin chỉnh lại đề: Kẻ \(BH\perp AD\); \(CK\perp AE\). Chứng minh rằng: AH = AK.
\(\Delta BHD\)vuông và \(\Delta CKE\)vuông có: BD = CE (gt)
\(\widehat{D}=\widehat{E}\)(\(\Delta ADE\)cân tại A)
=> \(\Delta BHD\)vuông = \(\Delta CKE\)vuông (cạnh huyền - góc nhọn) => HD = KE (hai cạnh tương ứng)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AD - HD = AE - KE
=> AH = AK (đpcm)