K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mik chịu

3 tháng 6 2016

áp dụng tính chất đường phân giác ta có : AD/DC=AB/BC  hay AD/AB=DC/BC  

theo tính chất của dãy tỉ số bằng nhau, ta co: AD/AB=DC/BC =( AD+DC)/ (AB+BC)=6/10=3/5

VẬY AD = 3/5 x AB=3/5 x 6 =18/5 cm

b: Xét ΔADB và ΔAEC có 

\(\widehat{A}\) chung

\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)

Do đó: ΔADB\(\sim\)ΔAEC

19 tháng 8 2021

giúp mk câu d ik ạ

 

10 tháng 4 2017

Áp dụng tính chất đường phân giác :

\(\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow\frac{AD}{AB}=\frac{DC}{BC}\)

Áp dụng tính chất  dãy tỉ số bằng nhau:

\(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}=\frac{6}{10}=\frac{3}{5}\)

Suy ra: AD=\(\frac{3}{5}\).6=3,6

DC=\(\frac{3}{5}\).4=2,4

a: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/2=6/5=1,2

=>AD=3,6cm; CD=2,4cm

Xét ΔABCcó ED//BC

nên ED/BC=AD/AC

=>ED/4=3,6/6=3/5

=>ED=2,4cm

b: Xét ΔADB và ΔAEC có

góc A chung

góc ABD=góc ACE

=>ΔABD đồng dạng với ΔACE

c: Xét ΔIEB và ΔIDC có

góc IEB=góc IDC

góc EIB=góc DIC

=>ΔIEB đồng dạng với ΔIDC

=>EB/DC=IE/ID

=>IE*DC=EB*ID

\(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}=\dfrac{1}{12}\)

=>góc ABC=85 độ

=>góc ABD=42,5 độ

Xet ΔBAC có BD làphân giác

=>DA/AB=DC/BC

=>DA/6=DC/1=30/7

=>DA=180/7cm

\(cosABD=\dfrac{BA^2+BD^2-AD^2}{2\cdot BA\cdot BD}\)

=>\(\dfrac{30^2+BD^2-\left(\dfrac{180}{7}\right)^2}{2\cdot30\cdot BD}=cos42.5\simeq0,74\)

=>BD^2-11700/49-44.4BD=0

=>\(BD\simeq49,25\left(cm\right)\)