K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Ta có:

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}=1.\)

=> \(\hept{\begin{cases}a+b=b+c\\c+d=d+a\end{cases}}\)=> a=c (đpcm) 

7 tháng 6 2016

18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31

18/31=181818/313131

14 tháng 3 2016

$\frac{a+b}{b+c}=\frac{c+d}{d+a}\Leftrightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}$a+bb+c =c+dd+a ⇔a+bc+d =b+cd+a 

Cộng 1 vào mỗi tỉ số:

$\Leftrightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\Leftrightarrow\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}$⇔a+bc+d +1=b+cd+a +1⇔a+b+c+dc+d =a+b+c+dd+a 

$\Leftrightarrow c+d=d+a$⇔c+d=d+a,

vì a;b;c;d $\ne0\Rightarrow a=c$