Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)
\(\Rightarrow\)\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
vì a,b,c khác 0 và các mẫu đều khác 0 nên a = b = c
\(\Rightarrow\frac{a+b}{2c}+\frac{b+c}{3a}+\frac{c+a}{4b}=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> cd(a2 + b2) = ab(c2 + d2)
=> a2cd + b2cd = abc2 + abd2
=> a2cd + b2cd - abc2 - abd2 = 0
=> (a2cd - abc2) + (b2cd - abd2) = 0
=> ac(ad - bc) + bd(bc - ad) = 0
=> ac(ad - bc) - bd(ad - bc) = 0
=> (ac - bd)(ad - bc) = 0
=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)(Vì a+b+c\(\ne\)0)
\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
Do a = 2015 \(\Rightarrow\)a =b =c =2015
Vậy b = c = 015
Sửa lại đề :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\cdot\frac{a}{b}=1\Rightarrow a=b\)
\(\cdot\frac{b}{c}=1\Rightarrow b=c\)
\(\Leftrightarrow a=b=c=2003\)
Vậy ...
thank you