Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét hiệu \(\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)}{b\left(b+1\right)}-\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+a-ba-b}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}\)
Do b(b+1) > 0 nên ta xét các trường hợp :
\(a< b\Rightarrow a-b< 0\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(a=b\Rightarrow a-b=0\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(a< b\Rightarrow a-b>0\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Chúc em học tốt :))
Quy đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(a+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì \(b>0\)nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh \(ab+2001a\)với \(ab+2001b\)
- Nếu \(a< b\)\(\Rightarrow\)tử số phân số thứ nhất\(< \)phân số thứ hai.
\(\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
- Nếu \(a=b\Rightarrow\)hai phân số bằng nhau \(=1\)
- Nếu \(a>b\)\(\Rightarrow\)tử số phân số thứ nhất \(>\)tử số phân số thứ hai.
\(\Rightarrow\)\(\frac{a}{b}>\frac{a+2001}{b+2002}\)
ỦNG HỘ NHA CÁC THÁNH ONLINE MATH
THANKS NHIỀU
để so sánh a/b và a+2012/b+2012
Ta xét tích:a(b+2012) và b(a+2012)
Vì b>0 =>b+2012>0
*a>b <=>2012a>2012b
<=>a(b+2012)>b(a+2012)
<=>a/b>a+2012/b+2012
*a=b<=>2012a=2012b
<=>a(b+2012)=b(a+2012)
<=>a/b=a+2012/b+2012
*a<b<=>2012a<2012b
<=>a(b+2012)<b(a+20120
<=>a/b<a+2012/b+2012
KL: a>b <=>a/b>a+2012/b+2012
....(tương tự như trên)
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n
\(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
cái này trong violympic toán lớp 7 vòng 1