Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NX: \(455^{12}\equiv1\left(mod4\right)\)
\(\Rightarrow ab\equiv1\left(mod4\right)\)nên đặt \(a=4k+m,b=4h+n\left(k,h\in N:m,n\in[0,1,2,3]\right)\)
\(\Rightarrow mn\equiv1\left(mod4\right)\)
\(\Rightarrow\orbr{\begin{cases}m=n=1\\m=n=3\end{cases}}\)\(\Rightarrow m+n\equiv2\left(mod4\right)\)
Vậy ab chia 4 dư 2
a : 4 dư 2 \(\Rightarrow a=4k+2\left(k\ge0\right)\left(1\right)\)
b : 4 dư 1 \(\Rightarrow b=4k_1+1\left(k_1\ge0\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow ab=\left(4k+2\right)\left(4k_1+1\right)\)
\(\Rightarrow ab=16kk_1+8k_1+4k+2\)
\(\Rightarrow ab=4\left(4kk_1+2k_1+k\right)+2\)
\(\Rightarrow ab:4\) dư 2 \(\left(đpcm\right)\)
x^4 | ax^3 | bx^2 | cx | d | du | |
x=0 | 0 | 0 | 0 | 0 | 12 | 12 |
x=1 | 1 | a | b | c | 12 | 12 (a+b+c=-1) |
x=2 | 16 | 8a | 4b | c | 12 | 0 (4a+2b+c=-14) |
x=4 | 256 | 64a | 16b | 4c | 12 | 60 (64a+16b+4c=-208) |
ta co
\(\hept{\begin{cases}a+b+c=-1\\4a+2b+c=-14\\64a+16b+4c=-208\end{cases}}\)
giai he
\(\hept{\begin{cases}a=-2\\b=-7\\c=8\end{cases}}\)
pt<=>\(a^4-2a^3-7a^2+8a+12\)
b) tu lam
a chia 5 dư 1 => a có dạng 5k+1
b chia 5 dư 2 => b có dạng 5k'+2
a.b=(5k+1)(5k'+2)=25kk'+10k+5k'+2
ta thấy \(25kk'⋮5\)\(10k⋮5\)\(5k'⋮5\)'
nên ab chia 5 dư 2