Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b là hai số thực thõa mãn a.b>0
Khi đó, giá trị nhỏ nhất của biểu thức Q=(a+b)(1/a+1/b), Qmin=?
(a+b)(1/a+1/b)=1+a/b+b/a+1
=2+(a^2+b^2)/(a*b)
vì a^2+b^2>0; a*b>0
=>Qmin=2
Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4
\(Q=2+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=4\)
Q min = 4 khi a =b
\(S=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)
\(S=\left(1+\frac{1}{1-b}\right)\left(1+\frac{1}{1-a}\right)\)
\(S=\frac{1-b+1}{1-b}\times\frac{1-a+1}{1-a}\)
\(S=\frac{\left(2-b\right)\left(2-a\right)}{\left(1-b\right)\left(1-a\right)}\)
\(S=\frac{4-2a-2b+ab}{1-a-b+ab}=\frac{4-2\left(a+b\right)+ab}{1-\left(a+b\right)+ab}\)
\(S=\frac{4-2+ab}{1-1+ab}=\frac{2+ab}{ab}=1+\frac{2}{ab}\)(*)
từ \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow4ab\le1\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow\frac{1}{ab}\ge4\)
\(\Leftrightarrow\frac{2}{ab}\ge8\)(1)
thay (1) vào (*) có
\(S=1+\frac{2}{ab}\ge1+8=9\)
vậy GTNN của \(S=9\Leftrightarrow x=y=\frac{1}{2}\)