K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Sửa đề: cho a, b là các số nguyên thỏa mãn   \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\)  .....

Giải: Ta có: \(\left(7a-21b\right)⋮7\)   nên    \(\left(7a-21b+5\right)\)   không chia hết cho 7

Mà theo đề   \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\)   suy ra    \(\left(a-3b+1\right)⋮7\)

Lại có:   \(\left(42a+14b+14\right)⋮7\)   vì các số hạng đều chia hết cho 7

Do đó    \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\)    hay    \(\left(43a+11b+15\right)⋮7\)

23 tháng 11 2023

7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.

Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.

Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.

Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.

Vậy 43a + 11b + 15 chia hết cho 7.

22 tháng 1 2018

e) kq=-5 

25 tháng 4 2020

Có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\Rightarrow a=2c-b\\b+c=2a\left(1\right)\\c+a=2b\left(2\right)\end{cases}}\)

Thay a=2c-b vào (1) và (2) ta được

\(\hept{\begin{cases}b+c=2\left(2c-b\right)\\c+\left(2c-b\right)=2b\end{cases}\Rightarrow b=c\Rightarrow a=c}\)

Vậy a=b=c

Khi đó: \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Nguồn: GV

25 tháng 4 2020

Bảo Ngọc Đàm Bạn có chắc là ad đc tcdtsbn vs mọi a ; b ; c đôi một khác nhau ko ạ ?
nguyễn thị kim oanh              Trình bày bài kia là trg hợp 1 : a + b +  c ≠ 0 

Trường hợp 2 : a + b + c = 0 

~ Tự lm ~