K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Theo bài ta có :

\(\left\{{}\begin{matrix}a=5k+2\\b=5k_1+3\end{matrix}\right.\)

\(\Leftrightarrow ab=\left(5k+2\right)\left(5k_1+3\right)=25k.k_1+15k+10k_1+6=5\left(k.k_1+3k+1\right)+1\)

\(5\left(k.k_1+3k+1\right)⋮5\)

\(\Leftrightarrow5\left(k.k_1+3k+1\right)+1\) chia 5 dư 1

\(\Leftrightarrow ab\) chia 5 dư 1

6 tháng 9 2017

Vì a chia 5 dư 2 => \(a=5m+2\left(m\in N^{ }\right)\)

Vì b chia 5 dư 3 => \(b=5n+3\left(n\in N^{ }\right)\)

Khi đó:

\(ab=\left(5m+2\right)\left(5n+3\right)=25mn+15m+10n+6=25mn+15m+10n+5+1\)

Ta thấy: \(25mn+15m+10n+5⋮5\) =>\(25mn+15m+10n+5+1\)chia 5 dư 1 hay ab chia 5 dư 1
12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

11 tháng 6 2015

Đặt a=5x+2

b=5y+3

a.b=(5x+2)(5y+3)=25xy+15x+10y + 6=5(5xy+3x+2y+1)+1

Do 5(5xy+3x+2y+1) chia hết cho 5

=>5(5xy+3x+2y+1)+1 chia 5 dư 1

Vậy a . b chia 5 dư 1 với a:5 dư 2 và b:5 dư 3

25 tháng 2 2017

Ta có: a = 5 x p + 2 (p ∈ N )
Tương tự ta có: b = 5 x q + 3 (q ∈ N )
Theo bài ra ta có: a x b = (5 x p + 2) x (5 x q + 3)
Hay: a x b = 25 x p x q + 10 x q + 15 x p + 6 = 5 x (5 x p x q + 2 x q + 3 x p) + 6
Vì: 5 x (5 x p x q + 2 x q + 3 x p) chia hết cho 5; còn 6 chia cho 5 dư 1
Suy ra: a x b chia cho 5 có số dư là 1

7 tháng 7 2016

Đặt \(a=5k+2\)

      \(b=5h+3\)

\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)

\(=25kh+15k+10h+6\)

\(=25kh+15k+10h+5+1\)

\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.

Vậy ab chai 5 dư 1.

27 tháng 5 2018

Theo đề bài ta có:

          a\(\equiv\)2(mod 5)

         b\(\equiv\)3 ( mod 5)

=> ab\(\equiv\)2 x 3 ( mod 5 )

      ab\(\equiv\)6 ( mod 5)

      ab\(\equiv\)1 ( mod 5 )

Vậy ab chia 5 dư 1.

               Học tốt nha bn

31 tháng 12 2021

Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )

Ta có :

\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)

\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)

\(=25.m.n+5.n+10.m\)chia cho 5 dư 2

Vậy a.b chia cho 5 dư 2

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

25 tháng 8 2016

Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)

Ta có: a.b = (5.m + 1).(5.n + 2)

= (5.m + 1).5.n + (5.m + 1).2

= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2

=> a.b chia 5 dư 2

25 tháng 8 2016

bang 42 nha ban

19 tháng 10 2016

a=5n+1

b=5k+2

a^2=1 ﴾mod 5﴿

b^2=4 ﴾mod5﴿

﴾a^2+b^2﴿=0 ﴾mod 5﴿

không được dùng thì khai triển ra

a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2

25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5 

chia hết mà còn dư ak bạn ~!~