Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)
ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)
Áp dụng BĐt bunyakovsky 1 lần nữa:
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)
dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:
\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)
do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)
dấu = xảy ra khi a=b=c
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Lại theo Cauchy-Schwarz lần nữa:
\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)
Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Viết các BĐT tương tự và cộng lại
\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)
Từ \((1);(2)\) ta thu được ĐPCM
a)Ta cần c/m bất đẳng thức sau: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
Ta có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Leftrightarrow a^2+b^2\ge\frac{a^2+2ab+b^2}{2}\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow\left(2a^2-a^2\right)+\left(2b^2-b^2\right)-2ab\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Áp dụng ta có: \(a^2+b^2\ge\frac{1^2}{2}=\frac{1}{2}\) (đpcm)
b) tương tự
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
Ta có a, b > 0 nên ta áp dụng bất đẳng thức Cauchy cho :
- Cặp số a, b ta được
\(a+b\ge2\sqrt{ab}\)
- Cho cặp số 1/a, 1/b ta được
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
Nhân hai vế tương ứng ta có :
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot\frac{2}{\sqrt{ab}}=4\)( đpcm )
Đẳng thức xảy ra <=> a = b
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) ( 1 )
\(1+\frac{a}{b}+\frac{b}{a}+1\ge4\)
\(\frac{a}{b}+\frac{b}{a}\ge2\)
Áp dụng bất đẳng thức cauchy cho 2 số không âm a và b
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}\)
\(\frac{a}{b}+\frac{b}{a}\ge2\) ( 2 )
Suy ra ( 2 ) đúng
Vậy ( 1 ) đúng
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=2+\frac{a^2+b^2}{ab}\ge4\)
\(\frac{a^2+b^2}{ab}\ge2\)
\(a^2+b^2\ge2ab\) (điều này đúng nên BĐT đúng)
Ta có \(\left(a-b\right)^2=a^2-2ab+b^2\Rightarrow a^2+b^2=2ab\Rightarrow\frac{a^2+b^2}{ab}=2\Rightarrow\frac{a}{b}+\frac{b}{a}=2\)
Lại có:\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=\frac{a}{a}+\frac{b}{a}+\frac{a}{b}+\frac{b}{b}=2+2=4\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}>\frac{1}{2}\)
\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}>\frac{1}{8}\)( đpcm )
Đẳng thức xảy ra <=> a = b = 1/2
Ta có : a + b > 1 > 0 (1)
Bình phương hai vế : (a + b)2 > 1 => a2 + 2ab + b2 > 1 (2)
Mặt khác (a - b)2 \(\ge\)0 => a2 - 2ab + b2 \(\ge\)0 (3)
Cộng từng vế của (2) hoặc (3) : \(2\left(a^2+b^2\right)>1\)=> a2 + b2 \(\ge\frac{1}{2}\)(4)
Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\frac{1}{4}\)(5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\)=> a4 + 2a2b2 + b4 \(\ge\)0 (6)
Cộng từng vế (5) và (6) : \(2\left(a^4+b^4\right)>\frac{1}{4}\)=> \(a^4+b^4>\frac{1}{8}\)
1/a+1/b>=4/a+b
<=> (a+b)/ab>=4/(a+b)
<=> (a+b)^2 >=4ab
<=> a^2 +2ab +b^2 - 4ab>=0
<=> (a-b)^2>=0 => đpcm
II>>
a^3+b^3>=ab(a+b)
<=> (a+b)(a^2 -ab+b^2)>=ab(a+b)
<=> a^2 -ab+b^2>=ab
<=> (a-b)^2 >=0 => đpcm
Vì a>0 và b>0 nên ta áp dụng bất đẳng thức cosi ta có:
\(\frac{1}{a}\)+\(\frac{1}{b}\)\(\ge\)2\(\sqrt{\frac{1}{ab}}\) (1)
a+b\(\ge\)2\(\sqrt{ab}\) (2)
nhân vế với vế của (1) và (2) ta có:
(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)2\(\sqrt{\frac{1}{ab}}\).2\(\sqrt{ab}\)
=>(\(\frac{1}{a}\)+\(\frac{1}{b}\))(a+b)\(\ge\)4
dấu = xảy ra khi a=b
Ta có :
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\) ( Bất đẳng thức Bunhiacopski)
Mà lại có \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (BĐT ....)
\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2>\frac{1}{8}\cdot1=\frac{1}{8}\)(đpcm)
KL:.........