Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3-3ab+1=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)
\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)
Vì $a,b>0$ nên $a+b+1\neq 0$
Do đó:
\(a^2+b^2+1-a-b-ab=0\)
\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)
\(\Rightarrow a=b=1\)
Do đó: \(a^{2018}+b^{2019}=1+1=2\)
Ta có đpcm.
Ta có : \(a^3+b^3=c\left(3ab-c^2\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( Vì \(a+b+c=3\) )
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Mà : \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow A=675\left(1^{2018}+1^{2018}+1^{2018}\right)+1=675.3+1=2026\)
\(a^3+b^3=3ab-1\)
\(\Rightarrow a^3+b^3+1-3ab=0\)
\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)
\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)
Mà \(a,b>0\Rightarrow a+b+1>0\)
\(\Rightarrow a^2-ab+b^2-a-b+1=0\)
\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2+b^2-ab-1\le0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)-\left(a+b\right)\le0\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) (Do \(a^3+b^3=a^5+b^5\) )
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow2a^3b^3\le ab^5+a^5b\)
\(\Leftrightarrow a^5b+ab^5+2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4+b^4+2a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\)
Câu 1:
Theo bài ra ta có:
\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)
\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Rightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)
=> a^20 + b^20 = 2
:)) đừng ném đá nhá
Ta có: \(a^3+b^3+c^3-a^2+b^2+c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a0\\1-b\ge0\\1-c\ge0\end{cases}}\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu "=" xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)\)
Kết hợp với giả thiết
=> a,b,c hoán vị 1;0;0
=> S= 1
Sửa đề cm a2018+b2018=2
Ta có:\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3+1-3ab=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)
Vì a,b > 0 => a + b + 1 > 0
=>\(a^2+ab+b^2-a-b+1=0\)
=>2a2+2ab+2b2-2a-2b+2=0
=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0
=>(a+b)2+(a-1)2+(b-1)2=0
Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)
=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1
=>\(a^{2018}+b^{2018}=1+1=2\)