K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Đây: 

\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}=2.2.a=4a\)

Suy ra \(\frac{a^2}{b-1}\ge4a-4b+4\)

Tương tự với hai BĐT còn lại và cộng theo vế ta có đpcm.

3 tháng 5 2019

Ta có \(\frac{a}{a^2+2b+3}=\frac{a}{a^2+1+2\left(b+1\right)}\le\frac{a}{2a+2\left(b+1\right)}=\frac{a}{2\left(a+b+1\right)}\)

Chứng minh tương tự \(\hept{\begin{cases}\frac{b}{b^2+2c+3}\le\frac{b}{2\left(b+c+1\right)}\\\frac{c}{c^2+2a+3}\le\frac{c}{2\left(a+c+1\right)}\end{cases}}\)

Cộng 3 vế của 3 bđt lại ta được

\(VT\le\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Để bài toán được chứng minh thì ta cần \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)

\(\Leftrightarrow1-\frac{a}{a+b+1}+1-\frac{b}{b+c+1}+1-\frac{c}{c+a+1}\ge2\)

\(\Leftrightarrow A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\ge2\)

Ta có \(A=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

              \(=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

Áp dụng bđt quen thuộc \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)(quen thuộc) ta được

\(A\ge\frac{\left(a+b+c+3\right)^2}{\left(b+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)

     \(=\frac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)

      \(=\frac{2\left(a+b+c+3\right)^2}{2\left(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\right)}\)

     \(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+6}\)

     \(=\frac{2\left(a+b+c+3\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}\)

      \(=\frac{2\left(a+b+c+3\right)^2}{\left(a+b+c+3\right)^2}=2\)(DDpcm)

Dấu "=" xảy ra tại a= b = c =1

bn có thể ghi cho mk cái bđt đấy đc ko

#mã mã#

10 tháng 10 2016

Ta có 

\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge a\)

\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\)

\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge c\)

Cộng vế theo vế ta được

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}=\frac{1}{2}\)

Đạt được khi \(a=b=c=\frac{1}{3}\)

6 tháng 7 2018

áp dụng bất đẳng thức côsi 

\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}=4a\)

\(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\)

\(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)

cộng vế theo vế

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}+4\left(a-1\right)+4\left(b-1\right)+4\left(c-1\right)\ge4a+4b+4c\)

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge4\left(a+b+c\right)-4\left(a+b+c\right)+4\cdot3=12\)(đpcm)

6 tháng 7 2018

Cách khác:

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)-3}\)

Đặt \(a+b+c=x>3\)

Ta cần chứng minh

\(\frac{x^2}{x-3}\ge12\)

\(\Leftrightarrow\frac{\left(x-6\right)^2}{x-3}\ge0\)(đúng)

Vậy ta có điều phải chứng minh

23 tháng 8 2015

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).

7 tháng 9 2018

Ta có: \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow\sqrt{3}\sqrt{a^2+b^2+c^2}\ge a+b+c\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Rightarrow\frac{1}{3}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{3}.\frac{1}{3}\left(a+b+c\right)^2.\frac{9}{a+b+c}=a+b+c\)(1)

Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\sqrt{3}\sqrt{a^2+b^2+c^2}}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt{3}\sqrt{a^2+b^2+c^2}\)

\(\Rightarrow\frac{1}{3\sqrt{3}}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\sqrt{a^2+b^2+c^2}\)(2)
Cộng vế với vế của (1) với (2) ta được đpcm
Dấu "=" xảy ra khi a=b=c

8 tháng 9 2018

Hầu hết nỗi buồn của chúng ta đều bắt nguồn từ việc lấy behind the scenes của đời mình so sánh với trailer của người khác.

Thâm thúy :v

21 tháng 10 2015

sử dụng hệ quả bun-nhi-a ta có:

VT\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca\right)}\)

mà từ giả thiết , kết hợp với bất đẳng thức , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)=>\(a+b+c\ge9\)

mặt khác: ab+bc+ca\(\le\frac{\left(a+b+c\right)^2}{3}\)

=> VT\(\ge\)\(\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a+b+c+3\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(a+b+c\right)\frac{4\left(a+b+c\right)}{3}}=\frac{a+b+c}{4}\)(dpcm)

 

21 tháng 10 2015

kiss_rain_and_you giỏi thật làm được bài này

7 tháng 10 2017

2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Sao hôm thứ 7 nghỉ