K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cái đề này sao sao ý :

\(a^8\ge a^7vs\forall a\)

\(b^8\ge b^7vs\forall b\)

\(\Rightarrow a^8+b^8\ge a^7+b^7vs\forall ab\)

Đâu cần a + b =2 âu

7 tháng 2 2017

Bn làm sai rùi 

Không mất tính tổng quát giả sử \(a\ge b\)

BĐT\(\Leftrightarrow a^7\left(a-1\right)+b^7\left(b-1\right)\ge0\)

\(\Leftrightarrow a^7\left(a-\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(b-\dfrac{1}{2}a-\dfrac{1}{2}b\right)\ge0\)

\(\Leftrightarrow a^7\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(\dfrac{1}{2}b-\dfrac{1}{2}a\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)\left(a^7-b^7\right)\ge0\)(luôn đúng vì \(a\ge b\))

\(\Rightarrowđpcm\)

26 tháng 10 2019

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

26 tháng 10 2019

Thay b = 2 - a vào phân tích ta được:

VT - VP = 4 (a - 1)^2 (a^6 - 6 a^5 + 36 a^4 - 104 a^3 + 176 a^2 - 160 a + 64) 

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Lời giải

Cách giải đơn giản nhất là khai triển

\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)

\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)

\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)

Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)

và tương tự với các biểu thức còn lại.

Suy ra BĐT \((\star)\) luôn đúng.

Ta có đpcm

Đây chính là một dạng của BĐT Chebyshev:

Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Câu 2:

Tương tự câu 1 thôi.

Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)

\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)

Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)

\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)

Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)

Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)

\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)

Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)

Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.

22 tháng 1 2017

không mất tính tổng quát,giả sử a >= b

xét hiệu 2(a8+b8)-2(a7+b7)=2(a8+b8)-(a+b)(a7+b7) (do a+b=2)

=2a8+2b8-a8-ab7-a7b-b8=a8-a7b-ab7+b8=a7(a-b)-b7(a-b)=(a7-b7)(a-b) (1)

Theo giả sử : a>=b => a-b>=0 và a7-b7>=0

Vậy (1) >= 0 =>đpcm

\(\Rightarrow a^7\left(a-b\right)+b^7\left(b-a\right)>=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^7-b^7\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot A>=0\), với A>=0

=>Điều này luôn đúng

27 tháng 2 2018

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

Ta sẽ chứng minh: \(a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(ab+bc+ac\right)\) (*)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta có: \(bdt\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

Tiếp tục có: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+x^2z^2\)

Ta sẽ chứng minh: \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

Áp dụng bất đẳng thức AM-GM:\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xzy^2\\y^2z^2+z^2x^2\ge2\sqrt{y^2z^4x^2}=2xyz^2\\x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2yzx^2\end{matrix}\right.\)

Cộng theo vế: \(x^2y^2+y^2z^2+z^2x^2\ge xzy^2+xyz^2+yzx^2=xyz\left(x+y+z\right)\)

Vậy (*) đúng

Vậy bất đẳng thức cần chứng minh đúng

NV
20 tháng 8 2020

Trước hết ta chứng minh BĐT: \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

Thật vậy, BĐT tương đương \(2x^2+2y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\left(a^2\right)^2+\left(b^2\right)^2\ge\frac{1}{2}\left(a^2+b^2\right)^2\ge\frac{1}{2}\left[\frac{1}{2}\left(a+b\right)^2\right]^2=\frac{1}{8}\left(a+b\right)^4\) (đpcm)

Dấu "=" xảy ra khi \(a=b\)

7 tháng 2 2020

Ta có: \(a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\ge\left(\frac{1}{2}\right)^2\)

Và: \(a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\ge0\)

Và: \(2\left(a^4+b^4\right)\ge\frac{1}{4}\)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)

Ta có \(a+b=1\Leftrightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\left(1\right)\)

Lại có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)

Cộng từng vế (1) và (2) ta được : \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\Leftrightarrow a^4+2a^2b^2+b^4\ge\frac{1}{4}\left(3\right)\)

Mặt khác: \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)

Cộng từng vế (3) và (4) ta được

\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Leftrightarrow a^4+b^4\ge\frac{1}{8}\)

Bđt được chứng minh

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

19 tháng 8 2017

1) Ta có: \(x^4+y^4\ge2x^2y^2\)

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2\)

Tương tự: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)

\(\Rightarrow a^4+b^4\ge\dfrac{1}{8}\left(a+b\right)^4\)

b) Câu hỏi tương tự

c) Đề sai

19 tháng 8 2017

bạn có thể giải rõ hơn đc ko ạ mk chưa hiểu lắm, mong bạn giúp