K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

A O F B C S E I D

a/

Ta có

DA=DB (gt); EA=EC (gt) => DE là đường trung bình của \(\Delta ABC\) => DE // BC

b/

Ta có

DA=DB (gt); DE=DF (gt) => AEBF là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

c/

Ta có

AEBF là hbh => AE=BF (trong hbh hai cạnh đối bằng nhau) 

AE=AO (gt)

=> BF=AO (1)

Ta có

AE // BF (trong hình bình hành các cặp cạnh đối // với nhau) => BF // AO (2)

Từ (1) và (2) => ABFO là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hình bình hành)

Mà \(\widehat{BAO}=90^o\)

=> ABFO là HCN (Hình bình hành có 1 góc vuông là HCN)

d/

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a: Xét tứ giác AEBF có 

D là trung điểm của AB

D là trung điểm của EF
Do đó: AEBF là hình bình hành

b: Xét tứ giác ABFO có 

AO//BF

AO=BF

Do đó: ABFO là hình bình hành

mà \(\widehat{BAO}=90^0\)

nên ABFO là hình chữ nhật

7 tháng 12 2015

nfgmhkufhgfjkugyiotrkyhohrfidhgykrtyhijtrknuykotrhin

..................................

1 tháng 12 2016

chịu@@@@@@@@@@@@@@@@@@

1 tháng 12 2016

cũng biết làm nhưng ko 

17 tháng 11 2021

a)

Ta có: MB = MC; MA = MD (gt)

⇒ Tứ giác ABDC là hình bình hành

Mà: ∠A = 90°

⇒ Tứ giác ABDC là hình chữ nhật (đpcm)

b)

Gọi O là giao điểm của AC và AE

ΔAED có: OA = OE (E đối xứng với A qua BC); MA = MD (gt)

⇒ OM là đường trung bình của ΔAED

⇒ OM // ED (1)

Vì: E đối xứng với A qua BC

⇒ BC là đường trung trực của AE

⇒ BC ⊥ AE hay OM ⊥ AE (2)

Từ (1), (2) ⇒ ED ⊥ AE (đpcm)

c)

Ta có: BC // ED (OM // ED)

⇒ Tứ giác BEDC là hình thang

Ta có: BD = AC (Tứ giác ABDC là hình chữ nhật) (a)

ΔAEC có: CO vừa là đường trung tuyến vừa là đường cao

⇒ ΔAEC cân tại C ⇒ CA = CE (b)

Từ (a), (b) ⇒ BD = EC

Hình thang BEDC có: BD = EC

⇒ Tứ giác BEDC là hình thang cân

17 tháng 11 2021

xin lỗi anh(chị) em mới lớp 6 không giải đc

thật lòng xin lỗi :(((((

17 tháng 11 2021

((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!