Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài b) (x-4)(x-7)(x-6)(x-5)=1680
=> (x2-11x+28)(x2-11x+30)=1680
Đặt t=x2-11x+28
=> t(t+2)=1680
=>t2+2t-1680=0
=> t2+2t+1-1681=0
=> (t+1)2-412=0
=> (t-40)(t+42)=0
=> t=40 hoặc t=-42
Bạn thế vào như câu a) để giải nhé !!!
Giải :
a3 + b3 + a2c + b2c - abc
= ( a3 + b3 ) + ( a2c + b2c - abc )
= ( a + b ) ( a2 - ab + b2 ) + c ( a2 - ab + b2 )
= ( a2 - ab + b2 ) ( a + b + c )
Vì a + b + c = 0 , nên ( a + b + c ) ( a2 - ab + b2 ) = 0
Do đó a3 + b3+ a2c + b2c - abc = 0
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
(a3+b3)(a2+b2)-(a+b)
=a5+a3b2+ b3a2+b5-(a+b)
=a5+b5+a2b2(a+b)-(a+b)
=a5+b5+(a+b)-(a+b)(vì ab=1 nên a2b2=1)
=a5+b5(điều phải chứng minh)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
\(=a^5+a^3b^2+b^3a^2+b^5-\left(a+b\right)\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5+\left(a+b\right)\)
\(=a^5+b^5\)