K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

\(A=3+3^2+3^3+3^4+...+3^9+3^{10}\)(có 10 số)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)(có 5 nhóm)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(A=\left(1+3\right)\left(3+3^3+...+3^9\right)\)

\(A=4\left(3+3^3+...+3^9\right)⋮4\left(đpcm\right)\)

18 tháng 12 2016

A = 3+32+33+...+39+310

A = (3+ 32)+(33+34)+...+(39+310)

A = 3(1+3)+33(1+3)+...+39 (1+3)

A = (1+3)(3+33+...+39)

A = 4(3+33+...+39) => chia hết cho 4

18 tháng 12 2016

\(A=3+3^2+...+3^{10}\)

\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)

\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(=3\cdot4+...+3^9\cdot4\)

\(=4\cdot\left(3+...+3^9\right)⋮4\)

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

5 tháng 10 2015

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.

 

8 tháng 11 2019

*\(M=1+3+3^2+3^3+...+\)\(3^{19}=4+3^2+3^3+...+3^{19}\)

Ta có \(3^2⋮3^2=9,3^3⋮3^2=9,...,3^{19}⋮3^2=9\)nhưng \(4⋮̸9\)

=> \(M⋮̸̸9\)

*\(M=1+3+3^2+...+3^{19}\)

        \(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+...+\left(3^{16}+3^{17}+3^{18}+3^{19}\right)\)

         \(=40+3^4\left(1+3+3^2+3^3\right)+...+\)\(3^{16}\left(1+3+3^2+3^3\right)\)

         \(=40\left(1+3^4+...+\right)3^{16}⋮40\)

=>\(M⋮40\)

8 tháng 11 2019

\(a.\) \(M=1+3+3^2+...+3^{19}\)

Ta có: 1+3=4 ko chia hết cho 9, \(3^2⋮9,3^3⋮9,...,3^{19}⋮9\)

\(\Rightarrow\left(1+3\right)+3^2+3^3+...+3^{19}\)ko chia hết cho 9

\(\Rightarrow M\)ko chia hết cho 9. 

Sorry mình ko viết đc dấu ko chia hết vì nó lỗi.

\(b.M=1+3+3^2+3^3+...+3^{19}\)

\(\Rightarrow M=\left(1+3+3^2+3^3\right)+...\)\(+\left(3^{16}+3^{17}+3^{18}+3^{19}\right)\)

\(\Rightarrow M=1\times\left(1+3+3^2+3^3\right)+3^4\)\(\times\left(1+3+3^2+3^3\right)+...+\)\(3^{16}\times\left(1+3+3^2+3^3\right)\)

\(\Rightarrow M=1\times40+3^4\times40+...\)\(3^{16}\times40\)

\(\Rightarrow M=40\times\left(1+3^4+...+3^{16}\right)\)

\(\Rightarrow M⋮40\)

Hok tốt.

Nhớ cho mik đúng nha

29 tháng 11 2017

Khi chia 3 số này cho 4 đc các số dư là : 1,2,3 

Suy ra gọi các số này là : 4k+1 , 4k+2, 4k+3

Tổng : 4k ( 1+2+3) = 4k . 6

Mà 4k chia hết cho 2 

6 chia hết cho 2 suy ra điều phải chứng minh ( DPCM là a+b+c chia hết cho 2)

7 tháng 7 2017

Ta có: A= 3+3\(^2\)+3\(^3\)+3\(^4\)+3\(^5\)+3\(^6\)+3\(^7\)+3\(^8\)+3\(^9\)+3\(^{10}\)

\(\Rightarrow\)A=  (3+3\(^2\)) +(3\(^3\)+3\(^4\))+(3\(^5\)+3\(^6\)) +(3\(^7\)+3\(^8\))+(3\(^9\)+3\(^{10}\))

\(\Rightarrow\) A=  12 + 3\(^2\)(3\(^1\)+3\(^2\))+3\(^4\)(3\(^1\)+3\(^2\)) +3\(^6\)(3\(^1\)+3\(^2\)) + 3\(^8\)(3\(^1\)+3\(^2\))

\(\Rightarrow\) A=  12 + 3\(^2\). 12+3\(^4\) . 12+3\(^6\) .12+ 3\(^8\) .12

\(\Rightarrow\)A=  12 . ( 3\(^2\)+3\(^4\) +3\(^6\)+ 3\(^8\))

Vì 12 \(⋮\)4  \(\Rightarrow\)12 . ( 3\(^2\)+3\(^4\) +3\(^6\)+ 3\(^8\)\(⋮\)4 hay A \(⋮\)4

7 tháng 7 2017

kệ mịa mày

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha