Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3\left(a+b+c\right)}=\frac{1}{3}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Thay a=2k ; b=5k ; c=7k vào biểu thức \(A=\frac{a-b+c}{a+2b-c}\)ta có :
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2\times5k-7k}\)
\(A=\frac{k\left(2-5+7\right)}{k\left(2+2\times5-7\right)}\)
\(A=\frac{k\times4}{k\times5}\)
\(A=\frac{4}{5}\)
Vậy giá trị vủa biểu thức A là \(\frac{4}{5}\).
Học tốt
Sgk
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+2b+3c}{3+2\cdot4+3\cdot5}=\dfrac{44.3}{26}=\dfrac{443}{260}\)
Do đó: a=1329/260; b=443/65; c=443/52
đề lỗi rồi em
sửa lại : \(A=\frac{a+b-c}{a+2b-c}\)
ta có : \(\frac{a}{7}=\frac{b}{5}=\frac{c}{2}\)
áp dụng t/c dãy t/s = nhau
\(\frac{a}{7}=\frac{b}{5}=\frac{c}{2}=\frac{a+b-c}{7+5-2}=\frac{a+b-c}{7+5-2}\)(1)
ta lại có : \(\frac{a}{7}=\frac{b}{5}=\frac{c}{2}\Rightarrow\frac{a}{7}=\frac{2}{2}.\frac{b}{5}=\frac{c}{2}\Rightarrow\frac{a}{7}=\frac{2b}{10}=\frac{c}{7}\)
áp dụng t/c dãy t/s = nhau
\(\frac{a}{7}=\frac{2b}{10}=\frac{c}{2}=\frac{a+2b-c}{7+10-2}=\frac{a+2b-c}{7+10-2}\)(2)
từ (1) và (2)
=> \(\frac{a+b-c}{7+5-2}=\frac{a+2b-c}{7+10-2}\Rightarrow\frac{7+10-2}{7+5-2}=\frac{a+b-c}{a+2b-c}\Rightarrow\frac{3}{2}=\frac{a+b-c}{a+2b-c}\)
giải dùm mk vs đi