Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
papa ko làm thì thui z 2`
a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100
A = 21001 - 1 < 2101
Vậy A < 2101
câu b tính trong ngoặc sau đó tính x như thường
\(A=\frac{2017^{99}}{2017^{100}-2}\)
=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)
\(B=\frac{2017^{100}}{2017^{101}-2}\)
=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)
Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)
Nên 2017A > 2017B
Vậy A > B
a) S= 1+2+22+...+29
2S=2+22+23+...+210
2S-S=(2+22+23+...+210)-(1+2+23+...+29)
S=210-1
5.28=2.2+1.28=1+22.28=1+210
=>S=5.28
b) A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
A=2101-1
=> A<2101
A = 3+32+33+.....+3100
3A = 32+33+34+....+3101
2A = 3A - A = 3101-3 < 3101
=> A = \(\frac{3^{101}-3}{2}<3^{101}\)
=> A < B
A = 3 + 32 + 33 + 34 +.............3100
3A =32 + 33 + 34 +.............3101
3A - A = (3 + 32 + 33 + 34 +.............3100) - (32 + 33 + 34 +.............3101)
2A = 3101 - 3
\(A=\frac{3^{101}-3}{2}\)
B = 3101
Ta có A < B
2A=2(1+2+22+23+......+2100)
2A=2+22+23+24+......+2101
TA CÓ
2A-A=2+22+23+24+......+2101-(1+2+22+23+......+2100)
A=1+2201>2201
=>A>B
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
Mk thấy phần a dễ lên bạn tự làm nha
B=(37373737.43-43434343.37):(12+22+32+............+1002)
B=(37.1010101.43-43.101010101.37):(12+22+32+............+1002)
B=0:(12+22+32+............+1002)
B=0
Vậy B=0
Chúc bn học tốt
\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
Ta có: \(2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)
\(A=2^{101}-2\)
Vì \(2^{101}=2^{101}\)
\(\Rightarrow2^{101}-2< 2^{101}\)
Hay \(A< 2^{101}\)
Vậy \(A< 2^{101}\).
\(#NqHahh\)