K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)

\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)

\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)

A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{56}.31\)

\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)

Từ (1) và (2) => A chia hết cho 5.31

B = 1 + A nên B chia 5,31 và 15 đều dư 1.

 

3 tháng 1 2016

\(\frac{7}{58}\)

4 tháng 2 2019

Coi a là số tự nhiên nhỏ nhất

Bài 1 Khi  chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3  suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6

  hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)

 Suy ra BCNN(3,4,5,6)=32. 23.5=360

           BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)

          a thuộc(358;718;1078,..)

Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078

4 tháng 2 2019

Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0) 

                                                                                                         3n    =(...9)   (số tận cùng của 3n=9)

   Ta có 3n+4+1=3n.34+1

                        =(...9).(...1) +1

                       =  (...0) Vậy 3n+4+1 có tận cùng là 0

Suy ra 3n+4+1 là bội của 10

1 tháng 11 2015

A=( 2+2^2) + (2^3+2^4) +......+ (2^59 + 2^60)

A=2.(1+2) + 2^3. (1+2) +.....+ 2^59.(1+2)

A=2.3+2^3.3+......+ 2^59.3

A= 3. (2+2^3+....+2^59)

vì 3 chia hết cho 3 suy ra A chia hết cho 3avt109189_60by60.jpgNguyễn Thị kim Oanh

tick nha

1 tháng 11 2015

đừng dại dột bấm vào Đúng 0 này của nó sẽ hối hận cả đời

17 tháng 12 2017

Bài 1:

Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)

Thay a = 16.m, b = 16.n vào a+b = 128, ta có:

\(16.m+16.n=128\)

\(\Rightarrow16.\left(m+n\right)=128\)

\(\Rightarrow m+n=128\div16\)

\(\Rightarrow m+n=8\)

Vì m và n nguyên tố cùng nhau

\(\Rightarrow\) Ta có bảng giá trị:

m1835
n8153
a161284880
b128168048

Vậy các cặp (a,b) cần tìm là:

  (16; 128); (128; 16); (48; 80); (80; 48).

Bài 2:

Gọi d là ƯCLN (2n+1, 2n+3), d  \(\in\) N*

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Vì 2n+3 và 2n+1 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)

\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

17 tháng 12 2017

cam on ban nhieu lam cuu tinh

7 tháng 2 2019

1, a,b ko chia hết cho 3 nhưng có cùng số dư khi chia cho 3

=> a,b cùng chia 3 dư 1 hoặc 2

sau đó xét 2 TH;

=> ab chia 3 dư 1 => ab-1 là bội của 3 (ĐPCM)

7 tháng 2 2019

Ta có:

S=1+2+2^2+.......+2^2012

2S=(2+2^2+2^3+........+2^2013)

S=2^2013-1=(2^2014-2)/2

=> S=1/2 

Câu b tra con nhà bà mạng :D