K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

a = 20042 + 20032 + 2002 - 20012 

   = ....6 + ..9 + ....0 -.... 1 = ....14 => Chữ số hàng chục là 1 (lẻ)

Khi a là SCP có chữ số tận cùng là 4 thì chữ số hàng chục phải là số chẵn

Vì vậy a không phải là SCP (đpcm)

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)

12 tháng 6 2020

Ta có :  \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Như vậy, cần chứng minh :

\(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)

Áp dụng BĐT Cô-si,ta có : 

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{a^2b^2c^2}=8abc\)

Vậy ta có điều phải chứng minh.

Dấu"=" xảy ra khi a = b = c

Câu 2:

a: \(=\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{72\cdot2}=12\)

b: \(=\sqrt{\left(65-63\right)\left(65+63\right)}=\sqrt{128\cdot2}=16\)

c: \(=\sqrt{\left(221-220\right)\left(221+220\right)}=\sqrt{441}=21\)

d: \(=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{225\cdot9}=3\cdot15=45\)