K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

bạn lớp 7 mà học kém quá nhỉ

dễ ot

b,c=1

18 tháng 2 2016

a) b,c=1

còn lại chịu

5 tháng 2 2021

a, Thay a=1 ta có hệ phương trình:

       1+\(\)1/b=c+\(\)1/1

       Và 1+1/b=b+1/c

<=>c=1/b

      Và1+1/b=b+1/1/b

Giải hệ này ta tìm được b=-1/2 và c=-2

 

 

 

 

 

25 tháng 8 2015

\(\frac{a}{b}<\frac{c}{d}\) \(\Rightarrow\) ad < bc.

\(\Rightarrow\) ad + ab < bc + ab

       a.(d + b) < b(a+c) 

\(\Rightarrow\) \(\frac{a}{b}<\frac{a+c}{b+d}\)  (1)

ad< bc         \(\Rightarrow\) ad + cd < bc + cd

                        d.(a+c) < c(b+d)

                    \(\Rightarrow\frac{a+c}{b+d}<\frac{c}{d}\)  (2)

Từ (1) và (2) suy ra: \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)

22 tháng 10 2016

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

22 tháng 10 2016

có câu b,c ko bạn

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

$a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=k\Rightarrow a=ck; b=ak$

Khi đó:

$\frac{a+b}{a-b}=\frac{a+ak}{a-ak}=\frac{a(1+k)}{a(1-k)}=\frac{1+k}{1-k}(1)$

$\frac{c+a}{c-a}=\frac{c+ck}{c-ck}=\frac{c(1+k)}{c(1-k)}=\frac{1+k}{1-k}(2)$

Từ $(1); (2)$ ta có đpcm.

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

 a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

4 tháng 8 2016

vk oi ck ne ket ban nhe