Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
A=19442005=19442000.19445≡9376.8224≡8224(mod10000)A=19442005=19442000.19445≡9376.8224≡8224(mod10000) nên A có 4 chữ số tận cùng là 8224 nên 2 chữ số tận cùng của A là 24
a, \(A=1+2+2^2+2^3+...+2^{2005}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)
\(2A=2+2^2+2^3+...+2^{2006}\)
\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2^{2006}-1\)
c, Số số hạng của A là : (2005 - 1) + 1 = 2005 (số hạng)
Nếu nhóm 3 số hạng vào 1 nhóm thì có : 2005 : 3 = 668 nhóm dư 1 số hạng
Ta có :
\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)
\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)
\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)
\(\Rightarrow A\div7\) dư 3
d, Làm tương tự c
a, Ta có : 2016 chia hết cho 4 mà lũy thừa
=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )
Vậy chữ số tận cùng của \(1944^{2016}\)là 6
b, Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)
mà : 324 đồng dư với -1 (mod 25 )
=> \(324^{2016}\)đồng dư với \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )
và : \(6^{2016}\)\(=6^{2015}.6\)
Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)
Có : 7776 đồng dư với 1 ( mod 25 )
=> \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )
Có : 6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)chia cho 25 dư 6
=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4
Ta có : 25.k + 6 chia hết cho 4
24.k + k + 2 + 4 chia hết cho 4
=> k + 2 chia hết cho 4
=> k = 4.m - 2
Thay k = 4.m - 2 ta có :
\(1944^{2016}=\) 25. (4.m - 2 ) + 6
\(1944^{2016}=\)100 .m - 50 + 6
\(1944^{2016}=\)100.m - 44 = .........00 - 44
\(1944^{2016}=\)...........56
Vậy hai chữ số tận cùng của \(1944^{2016}=\)56
Ai thấy mik làm đúng thì ủng hộ nha !!!
Cảm ơn các bạn nhiều
\(A=1+2+2^2+...+2^{99}\)
\(2A=2+2^2+2^3+2^{100}\)
\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
\(A=2^{100}-1< 2^{100}\)
a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)
= 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)
= 3+2^2.7+2^5.7+.....+2^2003.7
= 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3
b, 2B = 2+2^2+....+2^2006
B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1
Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 . ....6 = ....4 có tận cùng là 4
=> B có tận cùng là 4-1=3
Tk mk nha
a) Dư 2
b) 4
c) chịu :>>>
Xin like nha bạn. Thx bạn