Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)
=1+0+0+....+0
=1
Bài 2
Ta có: S=3^1+3^2+...+3^2015
3S=3^2+3^3+...+3^2016
=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)
2S=3^2016-3^1
S=\(\frac{3^{2016}-3}{2}\)
Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)
=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)
=> S có 2 tận cùng 4 hoặc 9
mà S có số hạng lẻ => S có tận cùng là 9
Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5( có tận cùng là 1)
125^2014 chia hết cho 5( vì 125 chia hết cho 5)
=> 121^2013+125^2014 ko chia hết cho 5
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5﴾ có tận cùng là 1﴿
125^2014 chia hết cho 5﴾ vì 125 chia hết cho 5﴿ => 121^2013+125^2014 ko chia hết cho 5
A = \(\dfrac{21^2.14.125}{35^5.6}\)
= \(\dfrac{\left(3.7\right)^2.\left(2.7\right).5^3}{\left(5.7\right)^5.\left(2.3\right)}\)
= \(\dfrac{3^2.7^2.2.7.5^3}{5^5.7^5.2.3}\)
= \(\dfrac{3^2.7^3.2.5^3}{5^5.7^5.2.3}\)
= \(\dfrac{3}{5^2.7^2}\)
= \(\dfrac{3}{35^2}\)
@Pham Thi Thu Trang
B = \(\dfrac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\dfrac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\dfrac{2.78}{104}\)
= \(\dfrac{3}{2}\)
@Pham Thi Thu Trang
Bài 1:
a, 20102>2009.2011=20102-1(Hằng đẳng thức đáng nhớ thứ 3)
b, A=B (Lấy 2A-A)
c,A<B( 1030=100010<102410=2100)
Bài 2:
a, A là số chẵn (8 số lẻ cộng lại ra số chẵn)
b, A chia hết cho 5.(Bạn gộp 7 với 73, 72 với 74, 75 với 77 và 76 với 78)
Chữ số tận cùng là 0 nhé bạn (Dụa vào câu a => A chia hết cho 50=> A tận cùng là 0)
a)\(2^3.3^x-23=7^2\\ 2^3.3^x=72\\ 3^x=9\\ \Rightarrow x=2\)
b)\(2^{x+1}.2^{2014}=2^{2015}\\ 2^{x+1}=2^1\\ \Leftrightarrow x+1=1\\ \Rightarrow x=0\)