K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)

mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)

\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)

\(\Rightarrow A< B\)

25 tháng 5 2018

Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath

26 tháng 11 2019

XIN LỖI Ơ PHẦN B=1+3+3^2+...+3^8

26 tháng 11 2019

Bạn đợi mình tí nha ! Mình đang giải !

23 tháng 11 2016

kieu nay la ko tinh ra ket qua hay so sanh

A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)

B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)

C=1/E; voi E=(1/5^9+1/5^8+...+1/5)

D=1/f; voi F=(1/3^9+1/3^8+...+1/3)

=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E

=> C>D=> A>B

3 tháng 3 2015

help meeeeeeeeee

 

6 tháng 1 2016

\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì  \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B

6 tháng 1 2016

ai trả lời cũng sai hết rồi 

Tui Gợi ý là A > B

Bây giờ các bạn ghi cách giải đi

 

27 tháng 3 2016

a=5^9

b=3^9

=>a>b

16 tháng 7 2016

sao hong ai dê y vay troi

16 tháng 7 2016

mình viết tắt bạn tự hiểu nha:

a=1+(59/1+5+525+...+58

b=1+(39/1+3+33+....+38

VD:A/B-C/D=A.C/B.D-C.B/D.B

TƯƠNG TỰ NHƯ A,B BẠN TÍNH RA

18 tháng 4 2020

Ta có: \(5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(\left(5+5^2+5^3+...+5^{10}\right)-\left(1+5+5^2+...+5^9\right)\)

\(4\left(1+5+5^2+...+5^9\right)\)\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+....+5^8=\frac{5^9-1}{4}\)

=> \(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}>5\)

Tương tự:

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

và \(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=>\(B=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+2}{3^9-1}=3+\frac{2}{3^9-1}< 5\)

=> A >  5 > B

18 tháng 4 2020

A= \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

  = \(\frac{1}{1+5+5^2+...+5^8}+\frac{5\left(1+5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}\)

mà \(\frac{1}{1+5+5^2+...+5^8}\approx0\)

suy ra: A= 5.

chứng minh tương tự, ta có: B=3

5 > 3 --> A>B