Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A : \(\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{2499}{2500}\)
Ta có công thức :\(\frac{m}{n}<\frac{m+1}{n+1}\)Nếu m < n
Từ đó ta có : \(\frac{1}{2}\times\frac{3}{4}\times......\times\frac{2499}{2500}<\frac{2}{3}\times\frac{4}{5}\times.....\times\frac{2500}{2501}\)
Suy ra A2<\(\frac{1}{2}\times\frac{3}{4}\times....\times\frac{2499}{2500}\times\frac{2}{3}\times\frac{4}{5}\times....\times\frac{2500}{2501}=\frac{1}{2501}\)< \(\left(\frac{1}{50}\right)^2\)= \(\frac{1}{2500}\)suy ra A < \(\frac{1}{50}\)
Còn câu còn lại áp dụng công thức : \(\frac{m}{n}>\frac{m-1}{n-1}\)nếu m<n
A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2499}{2500}\)
B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{2500}{2501}\)
A.B=\(\frac{1.2.3.4.5....2499.2500}{2.3.4.5.6......2499.2500.2501}=\frac{1}{2501}\)
so sanh A.A va A.B
ta cm duoc \(\frac{1}{2}<\frac{2}{3},\frac{3}{4}<\frac{4}{5},.....\)dung phan bu de so sanh
vay A< B
--> A.A<A.B = \(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)
-->A2 < 1/502
---> A <1/50
ma 1/50 <1/49
nen A<1/49
hay -A > -1/49
ko ai trả lời thì để mình
C/M : n/n+1 < n+1/n+2
1 - n/n+1 = 1/n+1
1 - n/n + 2 = 1/n+2
Vì 1/n+1 > 1/n+2 nên n/n+1 < n+1/n+2
1/2 . 3/4 . 5/6 ... 2499/2500 < 1/2 . 2/3 . 3/4 ... 2501/2502
=1/2501 < 1/2500 (1/50) 2
1/50 < 1/49 => A <1/49
a) gọi \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
gọi \(B=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)
b) Ta thấy \(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\), \(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3=\frac{1}{2}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
Ta thấy vế trong ngoặc nhỏ hơn 1
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>48\)
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99