K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Mình thấy đề này bị sai nhé bạn . 
Trong ngoặc khi quy đồng rút gọn thì ở mẫu vẫn sẽ có nhân tử 97 là số nguyên tố,  Mà 2014^2015 không chia hết cho 97 

=> A không là số nguyên

Mình sửa đề thành :

\(A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{98}\right)\cdot98!\\ =2\cdot3\cdot...\cdot98+1\cdot3\cdot...\cdot98+...+1\cdot2\cdot...\cdot96\cdot98+1\cdot2\cdot...\cdot97\\ =\left(2\cdot3\cdot...\cdot98+1\cdot2\cdot...\cdot97\right)+\left(1\cdot3\cdot...\cdot98+1\cdot2\cdot...96\cdot98\right)+...\\ =2\cdot3\cdot...\cdot97\cdot\left(1+98\right)+1\cdot3\cdot4\cdot...\cdot96\cdot98\cdot\left(2+97\right)+...=99\left(2\cdot3\cdot...\cdot97+1\cdot3\cdot4...\cdot96\cdot98\right).chia.het.cho.11\)

9 tháng 4 2021

Cảm ơn bạn

4 tháng 2 2017

Giải

A=(1+3^1)+(3^2+3^3)+...+(3^98+3^99)

A=4.1+3^2.(1+3^1)+...3^98.(1+3^1)

A=4.1+3^2.4+...3^98.4

A=4.(1+3^2+3^4+...+3^98)

=> A chia hết cho 4

2 tháng 1 2019

tao chap het

3 tháng 12 2018

Bỏ cái số 1 bé : "1" đằng sau cái số 1 lớn nhé . Câu hỏi chỉ có : \(A=3^{99}-3^{98}+3^{97}-3^{96}+.....+3^3-3^2+1=1\)

3 tháng 12 2018

có sai đầu bài ko vậy kết quả ghi bằng 1 rồi mà

3 tháng 1 2019

Giải giùm tớ (-209)-401+12

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

NA
Ngoc Anh Thai
Giáo viên
24 tháng 3 2021

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)