Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh
Lời giải:
a)
\(A\cap B=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
\(B\cap C=\left \{ x\in\mathbb{R}|4\leq x< 6 \right \}\)
\(A\cap C=\left \{ x\in\mathbb{R}|2\leq x\leq 5 \right \}\)
\(A\cup C=\left \{ x\in\mathbb{R}|1\leq x< 6 \right \}\)
\(A\setminus (B\cup C)=A\setminus \left \{ x\in\mathbb{R}|2\leq x\leq 7 \right \}=\left \{ x\in\mathbb{R}|1\leq x <2 \right \}\)
b)
Ta có: \(A\cap B\cap C=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)
Như vậy để \(D\subset A\cap B\cap C\) thì \(4\leq a,b\leq 5\) và \(a\leq b\)
bạn giải dùm mình 2 câu các tập hợp số nữa đi. cám ơn trc nha. mai mình nộp rồi. bạn tranh thủ dùm
\(\left|x-3\right|>4\Rightarrow\left[{}\begin{matrix}x-3>4\\x-3< -4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>7\\x< -1\end{matrix}\right.\)
\(\Rightarrow A=\left(-\infty;-1\right)\cup\left(7;+\infty\right)\)
\(\left|2x-1\right|< 2\Leftrightarrow-2< 2x-1< 2\Leftrightarrow-\frac{1}{2}< x< \frac{3}{2}\)
\(\Rightarrow B=\left(-\frac{1}{2};\frac{3}{2}\right)\)
\(A\cap B=\varnothing\)
\(A\backslash B=A\)
\(A\cup B=\left(-\infty;-1\right)\cup\left(-\frac{1}{2};\frac{3}{2}\right)\cup\left(7;+\infty\right)\)
\(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
\(\Rightarrow A=\left(-2;4\right)\)
\(\left|x+2\right|>5\Rightarrow\left[{}\begin{matrix}x+2>5\\x+2< -5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>3\\x< -7\end{matrix}\right.\)
\(\Rightarrow B=\left(-\infty;-7\right)\cup\left(3;+\infty\right)\)
\(A\cup B=\left(-\infty;-7\right)\cup\left(-2;+\infty\right)\)
\(A\cap B=\left(3;4\right)\)