K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

\(A=x-\sqrt{x}\)

\(+,0< x< 1\Rightarrow\sqrt{x}>x\Rightarrow x-\sqrt{x}< 0\Rightarrow A< 0\Rightarrow A< \left|A\right|\)

\(+,x\ge1\Rightarrow x\ge1\Rightarrow x\ge\sqrt{x}\Rightarrow x-\sqrt{x}\ge0\Rightarrow A\ge0\Rightarrow A=\left|A\right|\)

\(b,A=2\Leftrightarrow x-\sqrt{x}=2\Leftrightarrow x-\sqrt{x}+\frac{1}{4}=2+\frac{1}{4}=\frac{9}{4}\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2=\left(\pm\frac{3}{2}\right)^2\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=-1\left(loại\right)\end{matrix}\right.\Leftrightarrow x=4\) \(c,A=x-\sqrt{x}\Rightarrow A=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge0-\frac{1}{4}=\frac{-1}{4}\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâu "=" xay ra khi:}\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

24 tháng 7 2019

\(A=x-\sqrt{x}\)   \(\left(ĐKXĐ:x\ge0\right)\)

\(A=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\) 

\(A=\left(x-\frac{1}{2}\right)^2\) \(-\frac{1}{4}\) 

Có \(\left(x-\frac{1}{2^2}\right)\ge0\forall x\ge0\) 

     \(\left(x-\frac{1}{2}\right)^2\) -    1/4  >= \(\frac{-1}{4}\)mọi x>=0

   Dấu = sảy ra \(\Leftrightarrow\) x- \(\frac{1}{2}\) = 0

                        \(\Leftrightarrow\) x = 1 / 2  (  t/m  ) 

 vậy A đạt GTNN là -1/4 tại x = 1/2

   

24 tháng 7 2019

Tớ nhầm nhé \(x\) từ dòng thứ 3 xuống pahir thay =\(\sqrt{x}\)

4 tháng 9 2016

đặt \(\sqrt{x}\)= t ta có;

P = t2 -t +2 = (t -1/2)2 +2-1/4

a) vậy P >= 3/4 >1/2

b) thay P>3 vào rồi tìm x

c) GTNN P= 3/4 ( xem a sẽ rõ)

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

23 tháng 6 2019

\(a,\)\(đkxđ\Leftrightarrow x\ge0\)và \(x-9\ne0\Rightarrow x\ne9\)

\(A=\frac{6\sqrt{x}}{x-9}-\frac{5\sqrt{x}}{3-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+3}\)

\(\)\(=\frac{6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}+5x+15\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{18\sqrt{x}+6x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{6\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{6\sqrt{x}}{\sqrt{x}-3}\)

23 tháng 6 2019

\(b,\)Để \(A>2\)\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>2\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>\frac{12\sqrt{x}}{x-3}\)

\(\Rightarrow\frac{6\sqrt{x}-12\sqrt{x}}{\sqrt{x}-3}>0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}< 0\)

Vì \(\sqrt{x}\ge0;\)\(6>0\)\(\Rightarrow6\sqrt{x}\ge0\)

\(\Rightarrow\frac{6\sqrt{x}}{\sqrt{x}-3}>0\Leftrightarrow\sqrt{x}-3< 0\)

\(\Rightarrow\sqrt{x}< 3\Rightarrow\sqrt{x}< \sqrt{9}\)\(\Leftrightarrow x< 9\)

Mà \(x\ge0\left(đkxđ\right)\)\(\Rightarrow0\le x< 9\)

23 tháng 8 2018
Giúp mình nha mn cảm ơn nhiều ạ
28 tháng 11 2017

B1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)}+\frac{1}{xy}\)

\(=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{3}{3xy}\)

\(=\frac{1}{1-3xy}+\frac{\sqrt{3^2}}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=\left(1+\sqrt{3}\right)^2\)

29 tháng 11 2017

Dấu "=" xảy ra khi nào vậy ?