Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
Ta có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\\z=3k\end{cases}}\)
Khi đó P = \(\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
Theo bài ra, ta có :
x:y:z=5:4:3 ⇒x/5=y/4=z/5⇒
Đặt x/5=y/4=z/3=kx5=y4=z3=k ⇒x=5k
y=4k
z=3k⇒x=5ky=4kz=3k
⇒P=x+2y−3z/x−2y+3z=5k+8k−9k/5k−8k+9k=4k/6k=23
Vậy P=23
Hướng dẫn ông viết mũ nhá =) Ông hãy nhìn bên trên phần mình đăng bài + trả lời . Bẹn có thể thấy các kí tự khó hiểu vl :v Như : Hình ảnh , Tex , ... Hãy nhìn X2 và X2 ấn vô đó , lak ấn đc :VVV
#Mật
Ta có x,y,z tỉ lệ với 5,4,3
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\)
=> x=5.k , y=4.k , z=3.k
=> y =\(\frac{x+2y-3z}{x-2y+3z}\)= \(\frac{5k+2.\left(4k\right)-3.\left(3k\right)}{5k-2.\left(4k\right)+3.\left(3k\right)}\)= \(\frac{5k+8k-9k}{5k-8k+9k}\)= \(\frac{4k}{6k}\)= \(\frac{2}{3}\)
vậy y = \(\frac{2}{3}\)
a, Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)
Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4k}{6k}=\frac{2}{3}\)
b, \(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(Q+3=2015\cdot\frac{1}{5}=403\)
=>Q=403-3=400
a,\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4}{6}=\frac{2}{3}\)
b, \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c+c+a+a+b}=\frac{2015}{5}=403\)
\(\Rightarrow Q=400\)
Vậy Q = 400