K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Vì a : 5 dư 2

    b: 5 dư 3

\(\Rightarrow\) a; b lần lượt có dạng 5k+2; 5k+3

\(\Rightarrow\)ab=(5k+2).(5k+3)

           =5k(5k+3)+2(5k+3)

          =25k2+15k+10k+6

          =25k2+25k+5+1

          =5.(5k2+5k+1)+1

Ta có : \(5⋮5\)\(\Rightarrow5.\left(5k^2+5k+1\right)⋮5\)

Mà 1:5 =0 dư 1

\(\Rightarrow5.\left(5k^2+5k+1\right)+1:5 \left(d\text{ư}1\right)\)

\(\Rightarrow ab:5 \left(d\text{ư}1\right)\)

                    Điều phải chứng minh

16 tháng 6 2018

Đặt a = 5k + 2. b = 5x + 3 ( do a chia 5 dư 2, b chia 5 dư 3 )

=> ab = (5k+2)(5x+3) = 25kx+10x+15k + 6

Ta có 25kx chia hết cho 5, 10x chia hết cho 5, 15k chia hết cho 5, 6 chia 5 dư 1 => ab chia 5 dư 1

Chúc bạn học tốt ^_^

30 tháng 6 2015

Dễ mà . Em học lớp 6 cũng làm được.

Giả sử a=(c+3) ; b =(d+2)  (c ;d chia hết cho 5)

a.b=(c+3) . (d+2)

a.b=(c+3) . d + (c+3) .2

a.b=c.d+3.d+2.c+6

vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1

 

29 tháng 6 2015

Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !

22 tháng 8 2018

Vì a : 5 dư 2

-> a= 5k + 2

Vì b :5 dư 3

-> b= 5h+3

Xét: ab= (5k+2)(5h+3)=25kh+15k+10h+6=5(5kh+3k+2h+1)+1

Vi 5(5kh+3k+2h)chia hết cho 5

->5(5kh+3k+2h)+1:5 dư 1

->ab:5 dư1

Ta có : a = 5 x p + 2 ( \(_{p\in n}\) )

Tương tự : b = 5 x q + 3 (\(q\in n\) )

Theo đề bài : a x b = ( 5 x p + 2 ) . ( 5 x q + 3 )

Hay :  a x b = 25 x p x q x 10 x q + 15 x p + 6  = 5 x ( 5 x q x p x 2 x q x 3 x p ) + 6

Vì 5 x ( 5 x q x p x 2 x q x 3 x p ) \(⋮\)  5 , còn 6 chia hết cho 5 dư 1

=> a x b chia hết cho 5 dư 1 

Hok tốt !

22 tháng 8 2017

Theo đề: a : 5 dư 2 =>a+3 : hết cho 5

              b : 5 dư 3 =>b+2 : hết cho 5

=>ab+2*3=ab+6

mà ab:hết cho 5

6:5 dư 1

=>ab:5 dư 1

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

7 tháng 7 2016

Đặt \(a=5k+2\)

      \(b=5h+3\)

\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)

\(=25kh+15k+10h+6\)

\(=25kh+15k+10h+5+1\)

\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.

Vậy ab chai 5 dư 1.

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé

19 tháng 10 2016

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5