K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Ta tách như sau:

\(a^2+b^2+3ab-8a-8b-2\sqrt{3ab}+19=0\)

\(\Leftrightarrow a^2+b^2+2ab-8a-8b+ab-2\sqrt{3ab}+3+16=0\)

\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+\left(\sqrt{ab}-\sqrt{3}\right)^2+16=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2.\left(a+b\right).4+16\right]+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\left(a+b-4\right)^2+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b-4=0\\\sqrt{ab}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=3\end{cases}}\)

Vậy thì phương trình bậc hai có nghiệm a và b là: \(x^2-4x+3=0\).

14 tháng 10 2017

a) Ta có: a+b=14, ab=1 \(\Rightarrow\)pt: X^2 -14X+1       b) S= a^3+ b^3=2720 là số nguyên (ĐPCM)

19 tháng 5 2017

sai đề TT

4 tháng 7 2019

Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)

Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)

       \(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)

mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=> Có ít nhất 1 trong 2 pt có nghiệm 

=> đpcm

2 tháng 8 2017

Do a^2+b^2=2 suy ra a^2<2;b^2<2. suy ra a^2=2-b^2;b^2=2-a^2

√(a^4+8(2-a^2)=√(a^2-4)^2=|a^2-4|=4-a^2(do a^2<4)

Tương tự,√(b^4+8a^2)=4-b^2

BT=4-a^2+4-b^2=8-a^2-b^2=6(đpcm)

15 tháng 6 2018

Do a^2+b^2=2 suy ra a^2<2;b^2<2. suy ra a^2=2-b^2;b^2=2-a^2

√(a^4+8(2-a^2)=√(a^2-4)^2=|a^2-4|=4-a^2(do a^2<4)

Tương tự,√(b^4+8a^2)=4-b^2

BT=4-a^2+4-b^2=8-a^2-b^2=6(đpcm)

12 tháng 3 2020

Chỉ biết phân tích mù mịt cho đẹp thôi chứ không biết đúng hay sai?

Ta có \(L=\left(3-\frac{b}{a}+\frac{c}{a}\right):\left(5-\frac{3b}{a}+\left(\frac{b}{a}\right)^2\right)\)(chia cả tử và mẫu cho a2 khác 0)

Theo hệ thức Vi - et, \(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\)

Theo giả thiết \(0\le x_1\le x_2\le2\)\(\Rightarrow\hept{\begin{cases}x_1^2\le x_1x_2\\x_2^2\le4\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2\le x_1x_2+4\Leftrightarrow\left(x_1+x_2\right)^2\le3x_1x_2+4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4\le3x_1x_2\Leftrightarrow\left(x_1+x_2+2\right)\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)-3\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)-10\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5\le3\left(x_1x_2+x_1+x_2+3\right)\)

Vì \(\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5>0\)nên

\(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\ge\frac{1}{3}\)

Dấu "=" khi \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\)hoặc \(\hept{\begin{cases}x_1=2\\x_2=2\end{cases}}\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...