Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo
đồng dư nhé bạn.
Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)
Mà \(4^a+2\equiv0\left(mod2\right)\)
Mặt khác \(\left(2,3\right)=1\)
\(\Rightarrow4^a+2⋮6\)
Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)
Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6
Ta có: \(b+2019=\left(b+3\right)+2016\)(*)
Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)
Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)
\(\Rightarrow a+b+4⋮6\)
\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)
Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5
\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)
Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)
Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)
\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)
Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)
Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
a)
b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30
\(a+1\text{ ≡ }0\left(mod6\right)\)
\(b+2013\text{ ≡ }0\left(mod6\right)\)
\(\Rightarrow a+b+2014\text{ ≡ }0\left(mod6\right)\)
\(\Rightarrow a+b\text{ ≡ }2\left(mod6\right)\)
Giờ ta cần chứng minh \(4^a\text{ ≡ }4\left(mod6\right)\)
Với \(a=1\Rightarrow4^a=4\text{ ≡ }4\left(mod6\right)\)
Đặt \(4^k\text{ ≡ }4\left(mod6\right)\left(k>1\right)\)
Ta sử dụng quy nạp , chứng minh \(4^{k+1}\)cũng chia 6 dư 4.
Ta có :
\(4^k\text{ ≡ }4\left(mod4\right)\)
\(\Rightarrow4^{k+1}\text{ ≡ }16\text{ ≡ }4\left(mod6\right)\)
\(\Rightarrow4^a\)luôn chia 6 dư 4.
\(\Rightarrow4^a+a+b\text{ ≡ }6\text{ ≡ }0\left(mod6\right)\)
Vậy ...
Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath