Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài \(\Rightarrow a^2+b^2-2ab-8a=0\Leftrightarrow\left(a-b\right)^2=8a\)
Hay \(\left(a-b\right)^2=4.2a\)
Vì \(\left(a-b\right)^2;4\)là số chính phương nên \(2a\) là số chính phương chẵn \(\Rightarrow2a=4k^2\left(k\in Z\right)\)
Do đó \(a=2k^2⋮2\) và \(\frac{a}{2}=k^2\) là số chính phương (ĐPCM)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự
Ta có :
(a+3) ⋮ 5 => (a+3)2 ⋮ 5 => (a2+6a+9) ⋮ 5
(b+4) ⋮ 5 => (b+4)2 ⋮ 5 => (b2+8b+16) ⋮ 5
=> (a2+6a+9+b2+8b+16) ⋮ 5
=> (a2+5a+a+b2+3b+5b+25) ⋮ 5
Vì 5a⋮ 5 ; 5b⋮ 5 ; 25⋮ 5
=> (a2+a+b2+3b) ⋮ 5
Lại có :
(a+3) ⋮ 5
(b+4) ⋮ 5 => 3(b+4) ⋮ 5 => (3b+12) ⋮ 5
=> (a+3+3b+12) ⋮ 5
=> (a+15+3b) ⋮ 5
=> (a+3b) ⋮ 5 (Vì 15 ⋮ 5 )
Mà (a2+a+b2+3b) ⋮ 5
=> (a2+b2) ⋮ 5
Vậy (a2+b2) ⋮ 5