K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a= bao nhiêu có được bấm máy ko bạn

28 tháng 5 2018

k bạn ơi mik phải rút gọn a

27 tháng 10 2022

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

hay \(a=\sqrt{5}+1\)

\(T=\dfrac{\left(6+2\sqrt{5}\right)^2-4\cdot\left(16+8\sqrt{5}\right)+6+2\sqrt{5}+6\sqrt{5}+6+4}{6+2\sqrt{5}-2\sqrt{5}-2+12}\)

\(=\dfrac{56+24\sqrt{5}-50-24\sqrt{5}}{16}=\dfrac{6}{16}=\dfrac{3}{8}\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2018

Lời giải:

Bình phương biểu thức $a$ ta có:

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{4^2-(10+2\sqrt{5})}\)

\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5+1-2\sqrt{5}}\)

\(=8+2\sqrt{(\sqrt{5}-1)^2}=8+2(\sqrt{5}-1)=6+2\sqrt{5}\)

\(=[\pm (\sqrt{5}+1)]^2\)

Mà $a>0$ nên \(a=\sqrt{5}+1\)

Xét thêm 1 số \(1-\sqrt{5}\)

Ta thấy \(\left\{\begin{matrix} \sqrt{5}+1+1-\sqrt{5}=2\\ (\sqrt{5}+1)(1-\sqrt{5})=-4\end{matrix}\right.\) Do đó, theo định lý Viete đảo thì $a$ là nghiệm của pt \(x^2-2x-4=0\), tức là $a^2-2a-4=0$

Do đó:

\(T=\frac{a^2(a^2-2a-4)-2a(a^2-2a-4)+a^2-2a-4+8}{a^2-2a-4-10a+16}\)

\(=\frac{8}{-10a+16}=\frac{8}{-10(\sqrt{5}+1)+16}=\frac{8}{6-10\sqrt{5}}=\frac{4}{3-5\sqrt{5}}\)

7 tháng 8 2019
https://i.imgur.com/3xuKEN9.jpg
7 tháng 8 2019
https://i.imgur.com/JCFXX2s.jpg
31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1