K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ML
16 tháng 7 2015
Phân tích A thành nhân tử được
\(A=n\left(n+1\right)\left(n+2\right)\)
Từ đây việc chứng minh còn lại là khá dễ.
a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n^2+2n\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)\)
Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3
=>n3+3n2+2n chia hết cho 3
b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5
Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)
A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5
+)Nếu n chia hết cho 5
=>n\(\in\){0;5}
+)Nếu n+1 chia hết cho 5
=>n\(\in\){4;9}
+)Nếu n+2 chia hết cho 5
=>n\(\in\){3;8}
Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15
Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.