Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này khá là khó với lớp 7 nhỉ.
Đề bài hỏi về tổng chữ số 1 cách liên tục --> phải dùng dấu hiệu chia hết cho 9.
Chứng minh đc số trên chia 9 dư 8. Tự nghĩ như 1 bài tập :v
2^9 < 1000 nên số trên nhỏ hơn (10^3)^2009 nên có tối đa 3 . 2009 chữ số.
-> a < 9 . 3. 2009 ( Giả sử mỗi chữ số = 9 để đc số có tổng các chữ số lớn nhât)
a < 54243. Tìm số có tổng các chữ số lớn nhất -> b <= 4+ 9+9+9+9 -> b<=40
-> c<= 3+ 9 c<=12. Mà số ban đầu chia 9 dư 8 -> a,b,c đều chia 9 dư 8. Vậy c =8
Vì : \(2^3< 10\Rightarrow A< 10^{5835}\)
Suy ra \(a\le9\times5835=52515\). Suy ra \(b\le5+4\times9=41\)
Do đó , \(c\le4+9=13\)
Mặt khác \(A\equiv a\equiv b\equiv c\left(mod9\right)\). Vì \(2^3\equiv\left(-1\right)\left(mod9\right)\) nên \(A\equiv\left(-1\right)\left(mod9\right)\)
Vậy : \(c\equiv8\left(mod9\right)\) hay \(c=8\).
Vì \(2^3\equiv-1\left(mod9\right)\Rightarrow\left(2^3\right)^{3\cdot1945}\equiv-1\left(mod9\right)\)
Vậy \(\left(2^9\right)^{1945}\equiv9\left(mod9\right)\)
Kí hiệu S(m) là tổng các chữ số m
=> S(a); S(b) chia cho 9 cũng dư 8
Có: \(2^{13}=8192< 10^4\Rightarrow2^{130}< 10^{40}\)nên \(\hept{\begin{cases}2^{17420}< 10^{40\cdot134}\\\left(2^{13}\right)^6< 10^{24}\\2^7< 10^3\end{cases}}\)
Vậy \(\left(2^9\right)^{1945}=2^{17420+13\cdot6+7}< 10^{5391}\Rightarrow\left(2^9\right)^{5391}\)có không quá 5391 chữ số. Lại có:
\(a=S\left(\left(2^9\right)^{1945}\right)\le5391\cdot9=48519\)
\(b=S\left(a\right)\le3+9+9+9+9=39\)
\(c=S\left(b\right)\le12\)
\(\Rightarrow S\left(b\right)=8\)hay c=8
Vậy c=8
2. Ta có: n + S ( n ) + S ( S (n) ) = 60
Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) )
=> n + n + n \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60
=> 3n \(\ge\)60
=> n \(\ge\)20
=> 20 \(\le\)n \(\le\)60
Đặt: n = \(\overline{ab}\)
=> \(2\le a\le6\)
và \(2+0\le a+b\le5+9\)
=> \(2\le a+b\le14\)
a + b | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
\(\overline{ab}\) | 56 | 54 | 52 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 45 | 43 | 41 |
loại | loại | loại | tm | loại | loại | tm | loại | loại | tm | loại | loại | loại |
Vậy n = 50; n = 44 hoặc n = 47
1. Ta có: a + 3c = 2016 ; a + 2b = 2017
=> a + 3c + a + 2b = 2016 + 2017
=> 2a + 2b + 2c + c = 4033
=> 2 ( a + b + c ) = 4033 - c
mà a, b, c không âm
=> c \(\ge\)0
Để P = a + b + c đạt giá trị lớn nhất
<=> 2 ( a + b + c ) đạt giá trị lớn nhất
<=> 4033 - c đạt giá trị lớn nhất
<=> c đạt giá trị bé nhất
=> c = 0
=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2
Vậy max P = 0 + 2016 + 1/2 = 4033/2
Ta có \(8^{5835}< 10^{5835}\)
Vậy nên \(8^{5835}\) có tối đa 5834 chữ số.
Do a là tổng các chữ số của \(8^{5835}\) nên \(a\le9.5834=52506\)
Do b lại là tổng các chữ số của a nên \(\le5+9+9+9+9=41\)
Do c là tổng các chữ số của b nên \(c\le3+9=12\)
Ta có \(8^{5835}\equiv-1\left(mod9\right)\)
Vậy nên \(c\equiv-1\left(mod9\right)\)
Do \(c\le12\) nên c = 8.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của nguyen trung nghia - Toán lớp 7 - Học toán với OnlineMath
A2=999...92
Ta thấy 92=81(tổng chữ số=9)
992=9801(tổng chữ số =2.9
=>999...92=999...98000...01(tổng các chữ số =9.n)
=>Tổng các chữ số của A= tổng các chữ số của A2