Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=\frac{2.\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để A có giá trị là số nguyên
=>5/3n+2 phải là số nguyên
=>5 chia hết cho 3n+2
=>3n+2 thuộc Ư(5)={-1;1;-5;5}
Vì 3n+2 là số chia cho 3 dư 2
=>3n+2=5
=>3n=5-2
=>3n=3
=>n=3:3
=>n=1
Ý, Nguyễn Lê Thanh Hà là nick cũ của mik nè.Tuần này lại mất thêm 2 nick. Tổng cộng mik mất nick 3 lần r mà chẳng lấy lại dc! Ko bít đứa nào hack r đổi mật khẩu nx lun!!
A=2(n-5)+11/n-5=2+11/n-5
để A là 1 số nguyên thì 11 chia hết cho n-5
hay n-5 thuộc ước của 11
n-5 thuộc 11;-11;1;-1
n thuộc 16;-6;6;4
kl:.....
Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5
Suy ra 2n - 10 + 11 chia hết cho n - 5
Suy ra 2(n - 5) + 11 chia hết cho n - 5
Suy ra 11 chia hết cho n - 5
Suy ra n - 5 là ước của 11
Còn lại bạn làm nốt. Mình ngại làm lắm.
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
a) Ta có:\(\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=\frac{n+5}{n+5}-\frac{7}{n+5}=1-\frac{7}{n+5}\)
Để A nguyên thì (n+5) \(\in\)Ư(7)={1;-1;7;-7)
Ta có bảng sau:
Vậy n \(\in\){-4;4;2;-12} để A là số nguyên