K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

\(A=\frac{2n-1}{n+2}=\frac{2n+4-5}{n+2}=\frac{2\left(n+2\right)-5}{n+2}=2+\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)\Rightarrow n+2\in\left\{-5;-1;1;5\right\}\Rightarrow n\in\left\{-7;-3;-1;3\right\}\)

6 tháng 7 2016

                     Ta có : 2n - 1 = 2n + 4 - 4 - 1 = 2n + 4 - 5 = 2 . (n + 2) - 5

                      Để  A là số nguyên thì 2n - 1 chia hết cho n + 2 thì 2 . (n + 2) - 5 chia hết cho n + 2 mà 2 . (n + 2) chia hết cho n + 2 nên 5 chia hết cho n + 2 hay n + 2 thuộc Ư(5)

                       Mà Ư(5) = {-5;-1;1;5} => n + 2 thuộc {-5;-1;1;5}

                        Vì n là số nguyên nên ta có bảng sau

          

n + 2-5-115
n-7-3-13
N/xétchọnchọnchọnchọn

                               Vậy với n thuộc {-7;-3;-1;3} thì A là số nguyên

                                Ủng hộ mk nha ^ ~ ^

13 tháng 2 2018

Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)

 Lập luận

+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)

=> n thuộc tập N*

7 tháng 2 2020

Để Dlaf số nguyên

-) 2n+7 chia hết n+3

n+3 chia hết n+3 vậy 2(n+3)chia hết n+3

vậy 2n +6 chia hết n+3

suy ra (2n+7)-(2n+6)chia hết n+3

suy ra 1 chia hết n+3 

vậy n+3 = 1 hoặc -1

suy ra n= -2 hoặc -4 k đúbg mk nha

7 tháng 2 2020

Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)

Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)

mà \(n\inℤ\Rightarrow n+3\inℤ\)

Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n \(\in\) {-2;4;6;12}

4 tháng 5 2015

1) Gọi d= ƯCLN(2n +1; 3n+2)

=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d

3n+2 chia hết cho d => 2.(3n+2) chia hết cho d

=> 2.(3n+2) - 3.(2n+1) chia hết cho d

=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản

2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5

=> (n+ 2) - (n-5) chia hết cho n - 5

=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}

n-5-11-77
n46-212

Vậy n $\in$∈ {-2;4;6;12}

27 tháng 3 2020

a

Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

b

A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)

\(\Rightarrow\frac{5}{2n-1}\inℤ\)

\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)

c

\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

3 tháng 4 2018

Trả lời

\(Để\)\(A=\frac{2n+5}{2n-1}\)nhận giá trị nguyên thì

\(\Leftrightarrow2n+5⋮2n-1\)

\(\Rightarrow\left(2n-1\right)+6⋮2n-1\)

\(\Rightarrow6⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Vì 2n-1 là số lẻ \(\Rightarrow2n-1\in\left\{\pm1;\pm3\right\}\)

Ta có bảng

2n-1-1-313
2n0-224
n0-112
Đối chiếuChọnChonChọnChọn

Đối chiếu điều kiện \(n\in z\)

Vậy \(n\in\left\{0;-1;1;2\right\}\)

31 tháng 10 2016

1.

a) \(A=2+\frac{1}{n-2}\)

\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)

b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)

\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)

\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy A là phân số tối giản.

2.

- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )

- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )

- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3

Vậy p - 2014 là hợp số

31 tháng 10 2016

Cám ơn mày nha Trân

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)