Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{500}-5.2^{495}}{2^{501}-10.2^{495}}\)=\(\frac{2^{495}.\left(2^5-5\right)}{2^{495}.\left(2^6-10\right)}=\frac{2^5-5}{2^6-10}=\frac{32-5}{64-10}=\frac{27}{54}=\frac{1}{2}\)
\(A=\frac{92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
Đặt: \(M=92-\frac{1}{9}-\frac{2}{10}-...-\frac{91}{99}-\frac{92}{100}\)
Tách 92 thành tổng của 92 số 1.
\(M=1-\frac{1}{9}+1-\frac{2}{10}+...+1-\frac{91}{99}+1-\frac{92}{100}\)
\(M=\frac{8}{9}+\frac{8}{10}+...+\frac{8}{99}+\frac{8}{100}\)
\(M=\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}\)
Thay M vào A:
\(\Rightarrow A=\frac{\frac{40}{45}+\frac{40}{50}+...+\frac{40}{495}+\frac{40}{500}}{\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}}\)
\(\Rightarrow A=\frac{40\cdot\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}{\left(\frac{1}{45}+\frac{1}{50}+...+\frac{1}{495}+\frac{1}{500}\right)}\)
\(\Rightarrow A=40\)
PP/ss: Tớ ko chắc đâu :)))
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
\(-\frac{9991}{9992}+\frac{1}{99}-\frac{2}{19984}-\frac{5}{495}\)
\(=-\frac{9991}{9992}+\frac{1}{99}-\frac{1}{9992}-\frac{1}{99}\)
\(=\left(-\frac{9991}{9992}-\frac{1}{9992}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)
\(=-1+0\)
\(=-1\)
\(\frac{20.4^{15}.9^{10}-4.3^{21}.8^{10}}{10.2^{10}.6^{20}-2^{31}.27^7}\)
\(=\frac{4.5.\left(2^2\right)^{15}.\left(3^2\right)^{10}-4.3^{21}.\left(2^3\right)^{10}}{2.5.2^{10}.\left(2.3\right)^{20}-2^{31}.\left(3^3\right)^7}\)
\(=\frac{2^2.5.2^{30}.3^{20}-2^2.3^{21}.2^{30}}{2^{11}.5.2^{20}.3^{20}-2^{31}.3^{21}}\)
\(=\frac{2^{32}.5.3^{20}-2^{32}.3^{21}}{2^{31}.3^{20}.5-2^{31}.3^{21}}\)
\(=\frac{2^{32}.3^{20}.\left(5-3\right)}{2^{31}.3^{20}\left(5-3\right)}\)
\(=2\)
\(A=\frac{2^{500}-5.2^{495}}{2^{501}-10.2^{495}}=\frac{2^{495}.2^5-5.2^{495}}{2^{495}.2^6-10.2^{495}}=\frac{2^{495}\left(2^5-5\right)}{2^{495}\left(2^6-10\right)}=\frac{2^5-5}{2^6-10}=\frac{1}{2}\)