Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a,Ta có Nếu n chia 5 dư 4,1\(\Rightarrow\) n2chia 5 dư 4
\(\Rightarrow\) n2+a \(⋮\)5 \(\Rightarrow\)A\(⋮\) 5
Nếu n chia 5 dư 2 ,3 \(\Rightarrow\)n2 chia 5 dư 1
\(\Rightarrow\)n2 +1 \(⋮\)5
Nếu n \(⋮\)5 \(\Rightarrow\)A\(⋮\)5
Câu b mình sẽ nhắn tin cho bn nha
1. Đề sai với $n=1$.
2.
Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$
Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$
Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$
3.
Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow (n+7)(n+8)\vdots 2$
$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$
Lại có:
Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$
Ta phân tích A=n(n2+1)(n2+4)=n(n+1)(n−1)(n+2)(n−2)A=n(n2+1)(n2+4)=n(n+1)(n−1)(n+2)(n−2)
a)Vì A là tích 5 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 5.
b)Do A là tích 5 số tự nhiên liên tiếp nên luôn tồn tại một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 4, một số chia hết cho 5. Tức A chia hết cho 2.3.4.5 = 120. Vậy với mọi n nguyên thì A chia hết cho 120.