Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C D E H F
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu
a) Sửa đề: \(AB\cdot AC=AT^2\)
Xét (O) có
\(\widehat{TCB}\) là góc nội tiếp chắn \(\stackrel\frown{TB}\)
\(\widehat{ATB}\) là góc tạo bởi tiếp tuyến TA và dây cung TB
Do đó: \(\widehat{TCB}=\widehat{ATB}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ACT}=\widehat{ATB}\)
Xét ΔACT và ΔATB có
\(\widehat{ACT}=\widehat{ATB}\)(cmt)
\(\widehat{TAB}\) chung
Do đó: ΔACT\(\sim\)ΔATB(g-g)
Suy ra: \(\dfrac{AC}{AT}=\dfrac{AT}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AT^2=AB\cdot AC\)(đpcm)
bạn vẽ hình hộ mik đc ko