K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

 n+2/n+3 = n+3-3+2/n+3 = n+3 -1/n+3=n+3/n+3+1/n+3 suy ra 1 chia hết cho n+3 suy ra n+3 thuộc ước của 1=

n+3=1;n=1-3=-2. nếu n+3=-1 suy ra n= -1-3=-4.

b)để A có giá trị lớn nhất suy ra n+3 có giá trị nguyên dương bé nhất suy ra n+3=1 suy ra n=1-3= -2.

k cho mình nha...

9 tháng 3 2021

a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

b, Ta có :  \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)

Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3

Vậy GTLN A là 1 khi n = 3

NM
4 tháng 5 2021

ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nguyên thì n-2 là ước của 3 hay 

\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)

Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.

khi \(n-2>0\) và đạt giá trị nhỏ nhất

hay n=3.

18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

2 tháng 3 2019

a)Gọi A=n+1/n+2

để A là số nguyên thì n+1 chia hết cho n - 2

 ta có : n+1= n-2+3 chia het cho n-2

mà n-2 chia hết cho n-2 nên 3 chia hết cho n-2

=> n-2 thuộc Ư(3)={-3;3;-1;1}

=>n thuộc { 3;1;-1;5}

vậy n thuộc {3;-1;1;5}

) ta có : A max

=> (n-2) min mà (n-2) thuộc Z

=>(n-2)>0

<=> (n-2 ) =1

<=> n=3

3 tháng 3 2019

Xin bạn Nguyễn Công Tỉnh nhìn kĩ đề n + 2 nhé. mk xin giải lại. Mk ko có ý coi thường nhé.

Đặt \(A=\frac{n+1}{n+2}\)

Để \(A\inℤ\) thì \(\left(n+1\right)⋮\left(n+2\right)\)

\(\Leftrightarrow\left(n+2-1\right)⋮\left(n+2\right)\)

Vì \(\left(n+2\right)⋮\left(n+2\right)\) nên \(1⋮\left(n+2\right)\)

\(\Rightarrow\left(n+2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(TH1:n+2=-1\)

\(\Leftrightarrow n=-1-2\)

\(\Leftrightarrow n=-3\)

\(TH2:n+2=1\)

\(\Leftrightarrow n=1-2\)

\(\Leftrightarrow n=-1\)

Vậy \(n\in\left\{-3;-1\right\}\) thì \(\frac{n+1}{n+2}\) là số nguyên.