K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DN
2
S
29 tháng 3 2017
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
......................
\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}< 1\)
Vậy A < 1
NT
0
LD
0
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)
=>\(A=2-\frac{1}{2^{2013}}< 2\)
Vậy A<2