K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

2 tháng 9 2016

1. Theo đầu bài ta có:
\(x^3+3xy+y^3\)
\(=\left(x^3+y^3\right)+3xy\)
\(=\left(x+y\right)\left(x^2+y^2-xy\right)+3xy\)
Do x + y = 1 nên:
\(=\left(x^2+y^2-xy\right)+3xy\)
\(=x^2+y^2+\left(3xy-xy\right)\)
\(=x^2+y^2+2xy\)
\(=\left(x+y\right)^2\)
Do x + y = 1 nên:
\(=1^2=1\)

2 tháng 9 2016

2. Theo đầu bài ta có:
\(m+n+p=15\)
\(\Rightarrow\left(m+n+p\right)^2=15^2\)
\(\Rightarrow m^2+n^2+p^2+2mn+2np+2mp=225\)
Do m2 + n2 + p2 = 77 nên:
\(\Rightarrow77+2\left(mn+np+mp\right)=225\)
\(\Rightarrow2\left(mn+np+mp\right)=225-77\)
\(\Rightarrow mn+np+mp=\frac{148}{2}\)
\(\Rightarrow mn+np+mp=74\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

23 tháng 7 2016

1) 1

2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311

20122 + 20132 - 2 =8100311 . 

Vậy ta đã thấy 2 số bằng nhau

Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 2013- 2

23 tháng 7 2016

1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)

\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)

\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)

\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)

\(=1\)

Vậy \(B=1\)

23 tháng 7 2016

1) 1

2) hai số bằng nhau