K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

gia tri a=2 b=o 

5 tháng 11 2016

Rút gọn Q = a + b+ a+ b-6a/b - 6b/a + 9/a2 + 9/b                                                                                                                            = a2 - 6a/b + 9/b2 + b- 6b/a + 9/a+ a+ b 

                = ( a - 3/b )2 + (b - 3/a )2 + a+ b                                                                                                                                            = (a - 3/b )+ 2(ab - 3) + b2 + (b - 3/a)- 2(ab - 3) + a2                                                                                                                = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2                                                                                                       =  (a -3/b +b )^2 + (b-3/a-a)^2                                                                                                                                                   = (2-3/b)^2 + (b-3/a-a)^2                                                                                                                                                           mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2 

    

17 tháng 10 2020

Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)

Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*

Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)

Đẳng thức xảy ra khi a = b = c = 1

3 tháng 10 2017

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

3 tháng 8 2020

Nguồn : mạng :V vào thống kê coi hìnholm.pn

NV
22 tháng 5 2020

\(2=a+b\ge2\sqrt{ab}\Rightarrow ab\le1\Rightarrow-ab\ge-1\)

\(Q=2\left(a^2+b^2\right)-\frac{6\left(a^2+b^2\right)}{ab}+\frac{9\left(a^2+b^2\right)}{a^2b^2}\)

\(Q=\left(a^2+b^2\right)\left(\frac{9}{a^2b^2}-\frac{6}{ab}+2\right)\)

\(Q=\left(a^2+b^2\right)\left(\frac{3}{a^2b^2}-\frac{6}{ab}+3+\frac{6}{a^2b^2}-1\right)\)

\(Q=3\left(a^2+b^2\right)\left(\frac{1}{ab}-1\right)^2+\left(a^2+b^2\right)\left(\frac{6}{a^2b^2}-1\right)\)

\(Q\ge\left(a^2+b^2\right)\left(\frac{6}{a^2b^2}-1\right)\ge2ab\left(\frac{6}{a^2b^2}-1\right)=\frac{12}{ab}-2ab\ge\frac{12}{1}-2=10\)

Dấu "=" xảy ra khi \(a=b=1\)

Lưu ý: \(\frac{6}{a^2b^2}\ge6\Rightarrow\frac{6}{a^2b^2}-1>0\) nên dòng 6 vẫn Am-GM được bình thường

23 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)

\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)

Áp dụng BĐT Cauchy-Schwarz lại có:

\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:

\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)

Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2

23 tháng 12 2016

Chỗ dùng cauchy- schwarz mình không hiểu lắm

20 tháng 11 2019

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

20 tháng 11 2019

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

20 tháng 11 2019

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..

12 tháng 5 2019

Dùng Buniacoxki

=> MinP=9 khi a=b=c