Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ẹt số xui đưa link cũng bị duyệt
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại
\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
Nhân theo vế 4 BDT trên ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
Hay ta có ĐPCM
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
Ta có
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
Tương tự, ta có
\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)
Cộng vế theo vế của 3 bđt ta được đpcm
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\) (*) (Vì a,b,c > 0)
Áp dụng BĐT Cauchy ta có:
\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)
Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)
Từ đó, kết hợp với (*) suy ra:
\(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)
Ha ~! Vẫn còn sót bài này
\(BDT\Leftrightarrow\frac{1-a}{1+a}+\frac{1-b}{1+b}+2\sqrt{\frac{\left(1-a\right)\left(1-b\right)}{\left(1+a\right)\left(1+b\right)}}\)
\(\le\frac{1-a-b}{1+a+b}+1+2\sqrt{\frac{1-a-b}{1+a+b}}\)
Và \(\frac{2\left(1-ab\right)}{1+ab+a+b}+2\sqrt{\frac{1+ab-a-b}{1+ab+a+b}}\)\(\le\frac{2}{1+a+b}+2\sqrt{\frac{1-a-b}{1+a+b}}\)
Đặt \(\hept{\begin{cases}u=ab\\v=a+b\end{cases}\left(u,v\ge0\right)}\) khi đó cần c/m:
\(\frac{2\left(1-u\right)}{1+u+v}+2\sqrt{\frac{1+u-v}{1+u+v}}\le\frac{2}{1+v}+2\sqrt{\frac{1-v}{1+v}}\)
Biến đổi tương đương ta có:
\(\frac{1+u-v}{1+u+v}-\frac{1-v}{1+v}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)
\(\Leftrightarrow\frac{2uv}{\left(1+u+v\right)\left(1+v\right)}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)
Nếu \(u=0\) BĐT hiển nhiên đúng. Với \(u>0\) BĐT tương đương với:
\(\frac{2v}{2+v}\le\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\left(1\right)\)
Mà khi \(u>0\) ta có: \(\frac{1+u-v}{1+u+v}\ge\frac{1-v}{1+v}\)
Nên \(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{\frac{1-v}{1+v}}=2\sqrt{-1+\frac{2}{1+v}}\)
Hơn nữa ta có: \(v\le\frac{4}{5}\Rightarrow\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{-1+\frac{2}{1+\frac{4}{5}}}=\frac{2}{3}\)
Ngoài ra do \(v\le\frac{4}{5}< 1\Rightarrow\frac{2v}{1+v}=\frac{2}{\frac{2}{v}+1}< \frac{2}{3}\)
Do vậy \(\left(1\right)\) đúng, BĐT đầu được c/m
Ta có: \(\frac{a+1}{a}+\frac{b+1}{b}=\frac{ab+a+b+ab}{ab}=2+\frac{a+b}{ab}\in Z\)
\(\Rightarrow\frac{a+b}{ab}\in Z\forall a,b>0\) nên \(\frac{a+b}{ab}\ge1\Rightarrow a+b\ge ab\)
Do d là ước a nên \(a⋮d\Rightarrow a\ge d>0\)
d là ước b nên \(b⋮d\Rightarrow b\ge d>0\)
Suy ra \(ad\ge d^2\Rightarrow a+b\ge d^2\Rightarrow\sqrt{a+b}\ge d\)
Điều phải chứng minh
\(P=\frac{a+1}{a}+\frac{b+1}{b}=2+\frac{1}{a}+\frac{1}{b}=2+\frac{a+b}{ab}\)
\(\hept{\begin{cases}a,b>0\\P\in Z\end{cases}\Rightarrow ab\le\left(a+b\right)}\)(*) a,b vai trò như nhau; g/s \(a\le b\Rightarrow d\le a\le b\Rightarrow d^2\le ab\)
Từ (*)\(\Rightarrow d^2\le ab\le\left(a+b\right)\Rightarrow d\le\sqrt{ab}\le\sqrt{a+b}\)
Đẳng thức chỉ xẩy ra khi a=b=2=> dpcm