Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-2\)
\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)
\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1)
Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)
\(=1+1+2014=2016\)
Ta có: A = -2
=> 5x2 + y2 + 4xy - 6x - 2y = -2
=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0
=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0
=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0
=> (2x + y - 1)2 + (x - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)
Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014
= 1 + 1 + 2014 = 2016
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1