Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này sai rồi nha.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)
\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)
Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))
BĐT cần chứng minh trở thành:
\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)
Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)
Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a) \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
Từ đây ta có đpcm
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b\)
a) ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
<=>\(2a^2+2b^2+2c^2\ge2ab+2ac+2cb\)
cộng 2 vế cho \(a^2+b^2+c^2\)ta được điều phải chứng minh
b) Nhân 2 vế cho 9 ta sẽ được:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)rồi bạn làm tương tự như câu a) là ra nha!