K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Giải:

Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=k\)

+) \(k^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a}{c}\) (1)

+) \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2011b}{2011c}=\dfrac{a+2011b}{b+2011c}\) ( t/c dãy tỉ số bằng nhau )

\(\Rightarrow k^2=\left(\dfrac{a+2011b}{b+2011c}\right)^2=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\left(đpcm\right)\)

16 tháng 4 2017

Giải:

Từ hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b\) ta có:

\(VP=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}=\dfrac{a^2+2.2011ab+\left(2011b\right)^2}{b^2+2.2011bc+\left(2011c\right)^2}\)

\(=\dfrac{a^2+2.2011ab+2011^2ac}{ac+2.2011bc+2011^2c^2}\)

\(=\dfrac{a\left(a+2.2011b+2011^2c\right)}{c\left(a+2.2011b+2011^2c\right)}=\dfrac{a}{c}=VT\)

Vậy \(\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (Đpcm)

1 tháng 2 2018

b^2 = a.c

=> a/b = b/c

Đặt a/b = b/c = k

=> a=bk ; b=ck

=> a = c.k.k = c.k^2 => a/c = k^2

Lại có : (a+2011b)^2/(b+2011c)^2

= (bk+2011b)^2/(ck+2011c)^2

= [b.(k+2011)]^2/[c.(k+2011)]^2

= b^2.(k+2011)^2/c^2.(k+2011)^2

= b^2/c^2

= (b/c)^2

= k^2

=> a/c = (a+2011)^2/(b+2011c)^2

Tk mk nha

30 tháng 12 2016

Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)

áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)

Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)

\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)

NV
7 tháng 5 2019

\(b^2=ac\Rightarrow\frac{b}{c}=\frac{a}{b}=\frac{2010a}{2010b}=\frac{2011b}{2011c}=\frac{2010a+2011b}{2010b+2011c}\)

\(\Rightarrow\frac{b}{c}.\frac{a}{b}=\left(\frac{2010a+2011b}{2010b+2011c}\right).\left(\frac{2010a+2011b}{2010b+2011c}\right)\)

\(\Rightarrow\frac{a}{c}=\frac{\left(2010a+2011b\right)^2}{\left(2010b+2011c\right)^2}\)

Ta co:\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

               \(=\frac{2007b}{2007c}=\frac{a+2007b}{b+2007c}\)

     \(\Rightarrow\left(\frac{a+2007b}{b+2007c}\right)^2=\left(\frac{a}{b}\right)^2=\frac{a}{b}\times\frac{b}{c}=\frac{a}{c}\)

          Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\left(đpcm\right)\)

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

12 tháng 1 2018

b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\)\(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)\(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)\(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)\(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)

+) Vì a,b,c đôi một khác 0

\(\Rightarrow a+b+c=0\)

\(\rightarrow a+b=\left(-c\right)\)

\(\rightarrow a+c=\left(-b\right)\)

\(\rightarrow b+c=\left(-a\right)\)

+) Ta có:

\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)

\(=\left(-1\right)\)