K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

xem trên mạng

27 tháng 2 2018

mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn

27 tháng 2 2018

m=10 Câu hỏi của Đạt Trần Tiến - Toán lớp 9 | Học trực tuyến

30 tháng 10 2018

Ta cần chứng minh

\(a+b+c\ge ab+bc+ca\)

do \(x^2+y^2+z^2\ge xy+yz+zx\)

đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)

9 tháng 11 2018

Ma Đức Minh cho hỏi cái dòng đầu tiên :)

5 tháng 3 2020

Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

6 tháng 3 2020

.....................?

5 tháng 6 2018

câu 1:

\(a^2+1\ge2a\\ b^2+1\ge2b\\ c^2+1\ge2c\\ a^2+b^2\ge2ab\\ b^2+c^2\ge2bc\\ a^2+c^2\ge2ac\\ \Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ac\right)=2.6=12\\ \Rightarrow a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra khi a=b=c=1

6 tháng 6 2018

Câu 2)
\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{1}{4xy}+\dfrac{1}{8xy}+\dfrac{29}{8xy}+2xy\)

\(P=\dfrac{1}{2}\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{8xy}+2xy\right)+\dfrac{29}{8xy}\)

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) và bất đẳng thức Cô-si, ta được:

\(P\ge\dfrac{1}{2}.\left(\dfrac{4}{\left(x+y\right)^2}\right)+2\sqrt{\dfrac{1}{8xy}.2xy}+\dfrac{29}{2\left(x+y\right)^2}\)

\(x+y\le1\)

\(\Rightarrow P\ge\dfrac{1}{2}.4+2.\dfrac{1}{2}+\dfrac{29}{2}=\dfrac{35}{2}\)

Vậy GTNN của P = \(\dfrac{35}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}.\)

Chúc bạn học tốt!

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:
\(a^2+2bc-1=a^2+2bc-(ab+bc+ac)=a^2+bc-ab-ac\)

\(=a(a-b)-c(a-b)=(a-c)(a-b)\)

\(b^2+2ac-1=b^2+ac-ab-bc=(b-a)(b-c)\)

\(c^2+2ab-1=(c-a)(c-b)\)

Do đó:

\(P=(a-b)(a-c)(b-c)(b-a)(c-a)(c-b)\)

\(=-[(a-b)(b-c)(c-a)]^2\leq 0\)

Vậy $P_{\max}=0$

Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$

6 tháng 1 2020

sai đề : Tính giá trị nhỏ nhất